Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nature ; 600(7888): 295-301, 2021 12.
Article in English | MEDLINE | ID: covidwho-1626235

ABSTRACT

SARS-CoV-2 is a single-stranded RNA virus that causes COVID-19. Given its acute and often self-limiting course, it is likely that components of the innate immune system play a central part in controlling virus replication and determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and adaptive phenotype3,4. Here we show that a decline in viral load in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA sequencing of NK cells over the time course of the COVID-19 disease spectrum reveals a distinct gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant transforming growth factor-ß (TGFß) response signature, with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFß peak during the first two weeks of infection, and serum obtained from these patients severely inhibits NK cell function in a TGFß-dependent manner. Our data reveal that an untimely production of TGFß is a hallmark of severe COVID-19 and may inhibit NK cell function and early control of the virus.

2.
Nature ; 600(7888): 295-301, 2021 12.
Article in English | MEDLINE | ID: covidwho-1483137

ABSTRACT

SARS-CoV-2 is a single-stranded RNA virus that causes COVID-19. Given its acute and often self-limiting course, it is likely that components of the innate immune system play a central part in controlling virus replication and determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and adaptive phenotype3,4. Here we show that a decline in viral load in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA sequencing of NK cells over the time course of the COVID-19 disease spectrum reveals a distinct gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant transforming growth factor-ß (TGFß) response signature, with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFß peak during the first two weeks of infection, and serum obtained from these patients severely inhibits NK cell function in a TGFß-dependent manner. Our data reveal that an untimely production of TGFß is a hallmark of severe COVID-19 and may inhibit NK cell function and early control of the virus.

3.
J Clin Med ; 10(9)2021 May 01.
Article in English | MEDLINE | ID: covidwho-1224034

ABSTRACT

(1) Background: To evaluate time-dependent right ventricular (RV) performance in patients with COVID-19-associated acute respiratory distress syndrome (ARDS) undergoing intensive care (ICU) treatment. (2) Methods: This prospective observational study included 21 ICU patients with COVID-19-associated ARDS in a university hospital in 2020 (first wave). Patients were evaluated by transthoracic echocardiography at an early (EE) and late (LE) stage of disease. Echocardiographic parameters describing RV size and function as well as RV size in correlation to PaO2/FiO2 ratio were assessed in survivors and nonsurvivors. (3) Results: Echocardiographic RV parameters were within normal range and not significantly different between EE and LE. Comparing survivors and nonsurvivors revealed no differences in RV performance at EE. Linear regression analysis did not show a correlation between RV size and PaO2/FiO2 ratio over all measurements. Analysing EE and LE separately showed a significant increase in RV size correlated to a lower PaO2/FiO2 ratio at a later stage of COVID-19 ARDS. (4) Conclusion: The present study reveals neither a severe RV dilatation nor an impairment of systolic RV function during the initial course of COVID-19-associated ARDS. A trend towards an increase in RV size in correlation with ARDS severity in the second week after ICU admission was observed.

4.
J Electrocardiol ; 66: 102-107, 2021.
Article in English | MEDLINE | ID: covidwho-1188736

ABSTRACT

BACKGROUND: Patients with COVID-19 seem to be prone to the development of arrhythmias. The objective of this trial was to determine the characteristics, clinical significance and therapeutic consequences of these arrhythmias in COVID-19 patients requiring intensive care unit (ICU) treatment. METHODS AND RESULTS: A total of 113 consecutive patients (mean age 64.1 ± 14.3 years, 30 (26.5%) female) with positive PCR testing for SARS-CoV2 as well as radiographically confirmed pulmonary involvement admitted to the ICU from March to May 2020 were included and observed for a cumulative time of 2321 days. Fifty episodes of sustained atrial tachycardias, five episodes of sustained ventricular arrhythmias and thirty bradycardic events were documented. Sustained new onset atrial arrhythmias were associated with hemodynamic deterioration in 13 cases (35.1%). Patients with new onset atrial arrhythmias were older, showed higher levels of Hs-Troponin and NT-proBNP, and a more severe course of disease. The 5 ventricular arrhythmias (two ventricular tachycardias, two episodes of ventricular fibrillation, and one torsade de pointes tachycardia) were observed in 4 patients. All episodes could be terminated by immediate defibrillation/cardioversion. Five bradycardic events were associated with hemodynamic deterioration. Precipitating factors could be identified in 19 of 30 episodes (63.3%), no patient required cardiac pacing. Baseline characteristics were not significantly different between patients with or without bradycardic events. CONCLUSION: Relevant arrhythmias are common in severely ill ICU patients with COVID-19. They are associated with worse courses of disease and require specific treatment. This makes daily close monitoring of telemetric data mandatory in this patient group.


Subject(s)
COVID-19 , Aged , Arrhythmias, Cardiac/diagnosis , Electrocardiography , Female , Humans , Intensive Care Units , Middle Aged , RNA, Viral , SARS-CoV-2
5.
Kidney Int Rep ; 6(4): 905-915, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1169160

ABSTRACT

Introduction: Acute kidney injury (AKI) is an important complication in COVID-19, but its precise etiology has not fully been elucidated. Insights into AKI mechanisms may be provided by analyzing the temporal associations of clinical parameters reflecting disease processes and AKI development. Methods: We performed an observational cohort study of 223 consecutive COVID-19 patients treated at 3 sites of a tertiary care referral center to describe the evolvement of severe AKI (Kidney Disease: Improving Global Outcomes stage 3) and identify conditions promoting its development. Descriptive statistics and explanatory multivariable Cox regression modeling with clinical parameters as time-varying covariates were used to identify risk factors of severe AKI. Results: Severe AKI developed in 70 of 223 patients (31%) with COVID-19, of which 95.7% required kidney replacement therapy. Patients with severe AKI were older, predominantly male, had more comorbidities, and displayed excess mortality. Severe AKI occurred exclusively in intensive care unit patients, and 97.3% of the patients developing severe AKI had respiratory failure. Mechanical ventilation, vasopressor therapy, and inflammatory markers (serum procalcitonin levels and leucocyte count) were independent time-varying risk factors of severe AKI. Increasing inflammatory markers displayed a close temporal association with the development of severe AKI. Sensitivity analysis on risk factors of AKI stage 2 and 3 combined confirmed these findings. Conclusion: Severe AKI in COVID-19 was tightly coupled with critical illness and systemic inflammation and was not observed in milder disease courses. These findings suggest that traditional systemic AKI mechanisms rather than kidney-specific processes contribute to severe AKI in COVID-19.

6.
Nat Commun ; 12(1): 1961, 2021 03 30.
Article in English | MEDLINE | ID: covidwho-1169399

ABSTRACT

The pathogenesis of severe COVID-19 reflects an inefficient immune reaction to SARS-CoV-2. Here we analyze, at the single cell level, plasmablasts egressed into the blood to study the dynamics of adaptive immune response in COVID-19 patients requiring intensive care. Before seroconversion in response to SARS-CoV-2 spike protein, peripheral plasmablasts display a type 1 interferon-induced gene expression signature; however, following seroconversion, plasmablasts lose this signature, express instead gene signatures induced by IL-21 and TGF-ß, and produce mostly IgG1 and IgA1. In the sustained immune reaction from COVID-19 patients, plasmablasts shift to the expression of IgA2, thereby reflecting an instruction by TGF-ß. Despite their continued presence in the blood, plasmablasts are not found in the lungs of deceased COVID-19 patients, nor does patient IgA2 binds to the dominant antigens of SARS-CoV-2. Our results thus suggest that, in severe COVID-19, SARS-CoV-2 triggers a chronic immune reaction that is instructed by TGF-ß, and is distracted from itself.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Transforming Growth Factor beta/immunology , Adult , Aged , Aged, 80 and over , COVID-19/virology , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Interleukins/immunology , Male , Middle Aged , Plasma Cells/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
7.
Journal of Clinical Investigation ; 130(12):6477-6489, 2020.
Article in English | ProQuest Central | ID: covidwho-1021205

ABSTRACT

Coronavirus disease 2019 (COVID-19) has emerged as a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). So far, viral targets of cellular immunity and factors determining successful mounting of T cell responses are poorly defined. We therefore analyzed cellular responses to membrane, nucleocapsid, and spike proteins in individuals suffering from moderate or severe infection and in individuals who recovered from mild disease. We demonstrate that the CoV-2-specific CD4· T helper cell response is directed against all 3 proteins with comparable magnitude, ex vivo proliferation, and portions of responding patients. However, individuals who died were more likely to have not mounted a cellular response to the proteins. Higher patient age and comorbidity index correlated with increased frequencies of CoV-2specific CD4· T cells, harboring higher portions of IL-2-secreting, but lower portions of IFN-y-secreting, cells. Diminished frequencies of membrane protein-reactive IFN-y· T cells were particularly associated with higher acute physiology and chronic health evaluation II scores in patients admitted to intensive care. CoV-2-specific T cells exhibited elevated PD-1 expression in patients with active disease as compared with those individuals who recovered from previous mild disease. In summary, our data suggest a link between individual patient predisposition with respect to age and comorbidity and impairment of CoV-2specific Th1-type cellular immunity, thereby supporting a concept of altered T cell function in at-risk patients.

8.
J Clin Invest ; 130(12): 6477-6489, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-1021209

ABSTRACT

Coronavirus disease 2019 (COVID-19) has emerged as a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). So far, viral targets of cellular immunity and factors determining successful mounting of T cell responses are poorly defined. We therefore analyzed cellular responses to membrane, nucleocapsid, and spike proteins in individuals suffering from moderate or severe infection and in individuals who recovered from mild disease. We demonstrate that the CoV-2-specific CD4+ T helper cell response is directed against all 3 proteins with comparable magnitude, ex vivo proliferation, and portions of responding patients. However, individuals who died were more likely to have not mounted a cellular response to the proteins. Higher patient age and comorbidity index correlated with increased frequencies of CoV-2-specific CD4+ T cells, harboring higher portions of IL-2-secreting, but lower portions of IFN-γ-secreting, cells. Diminished frequencies of membrane protein-reactive IFN-γ+ T cells were particularly associated with higher acute physiology and chronic health evaluation II scores in patients admitted to intensive care. CoV-2-specific T cells exhibited elevated PD-1 expression in patients with active disease as compared with those individuals who recovered from previous mild disease. In summary, our data suggest a link between individual patient predisposition with respect to age and comorbidity and impairment of CoV-2-specific Th1-type cellular immunity, thereby supporting a concept of altered T cell function in at-risk patients.


Subject(s)
COVID-19/immunology , Interferon-gamma/immunology , Interleukin-2/immunology , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2/immunology , Th1 Cells/immunology , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/pathology , Disease Susceptibility , Female , Humans , Male , Middle Aged , Severity of Illness Index , Th1 Cells/pathology
9.
Brain Behav Immun ; 93: 415-419, 2021 03.
Article in English | MEDLINE | ID: covidwho-987109

ABSTRACT

BACKGROUND: COVID-19 intensive care patients can present with neurological syndromes, usually in the absence of SARS-CoV-2 in cerebrospinal fluid (CSF). The recent finding of some virus-neutralizing antibodies cross-reacting with brain tissue suggests the possible involvement of specific autoimmunity. DESIGN: Blood and CSF samples from eleven critically ill COVID-19 patients presenting with unexplained neurological symptoms including myoclonus, oculomotor disturbance, delirium, dystonia and epileptic seizures, were analyzed for anti-neuronal and anti-glial autoantibodies. RESULTS: Using cell-based assays and indirect immunofluorescence on unfixed murine brain sections, all patients showed anti-neuronal autoantibodies in serum or CSF. Antigens included intracellular and neuronal surface proteins, such as Yo or NMDA receptor, but also various specific undetermined epitopes, reminiscent of the brain tissue binding observed with certain human monoclonal SARS-CoV-2 antibodies. These included vessel endothelium, astrocytic proteins and neuropil of basal ganglia, hippocampus or olfactory bulb. CONCLUSION: The high frequency of autoantibodies targeting the brain in the absence of other explanations suggests a causal relationship to clinical symptoms, in particular to hyperexcitability (myoclonus, seizures). Several underlying autoantigens and their potential molecular mimicry with SARS-CoV-2 still await identification. However, autoantibodies may already now explain some aspects of multi-organ disease in COVID-19 and can guide immunotherapy in selected cases.


Subject(s)
Autoantibodies/cerebrospinal fluid , COVID-19/cerebrospinal fluid , Central Nervous System Diseases/virology , Aged , Autoantigens , Autoimmunity , Female , Humans , Male , Middle Aged
10.
Infection ; 48(4): 619-626, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-597401

ABSTRACT

PURPOSE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide causing a global health emergency. Pa-COVID-19 aims to provide comprehensive data on clinical course, pathophysiology, immunology and outcome of COVID-19, to identify prognostic biomarkers, clinical scores, and therapeutic targets for improved clinical management and preventive interventions. METHODS: Pa-COVID-19 is a prospective observational cohort study of patients with confirmed SARS-CoV-2 infection treated at Charité - Universitätsmedizin Berlin. We collect data on epidemiology, demography, medical history, symptoms, clinical course, and pathogen testing and treatment. Systematic, serial blood sampling will allow deep molecular and immunological phenotyping, transcriptomic profiling, and comprehensive biobanking. Longitudinal data and sample collection during hospitalization will be supplemented by long-term follow-up. RESULTS: Outcome measures include the WHO clinical ordinal scale on day 15 and clinical, functional, and health-related quality-of-life assessments at discharge and during follow-up. We developed a scalable dataset to (i) suit national standards of care, (ii) facilitate comprehensive data collection in medical care facilities with varying resources, and (iii) allow for rapid implementation of interventional trials based on the standardized study design and data collection. We propose this scalable protocol as blueprint for harmonized data collection and deep phenotyping in COVID-19 in Germany. CONCLUSION: We established a basic platform for harmonized, scalable data collection, pathophysiological analysis, and deep phenotyping of COVID-19, which enables rapid generation of evidence for improved medical care and identification of candidate therapeutic and preventive strategies. The electronic database accredited for interventional trials allows fast trial implementation for candidate therapeutic agents. TRIAL REGISTRATION: Registered at the German registry for clinical studies (DRKS00021688).


Subject(s)
Coronavirus Infections/physiopathology , Pneumonia, Viral/physiopathology , Registries , Berlin/epidemiology , Betacoronavirus , Biological Specimen Banks , COVID-19 , Coronavirus Infections/epidemiology , Disease Management , Humans , Observational Studies as Topic , Pandemics , Phenotype , Pneumonia, Viral/epidemiology , Prospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2 , Time Factors , Treatment Outcome , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...