Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Document Type
Year range
Computer Engineering and Applications Journal ; 12(2):71-78, 2023.
Article in English | ProQuest Central | ID: covidwho-20242189


COVID-19 is an infectious disease that causes acute respiratory distress syndrome due to the SARS-CoV-2 virus. Rapid and accurate screening and early diagnosis of patients play an essential role in controlling outbreaks and reducing the spread of this disease. This disease can be diagnosed by manually reading CXR images, but it is time-consuming and prone to errors. For this reason, this research proposes an automatic medical image segmentation system using a combination of U-Net architecture with Batch Normalization to obtain more accurate and fast results. The method used in this study consists of pre-processing using the CLAHE method and morphology opening, CXR image segmentation using a combination of U-Net-4 Convolution Block architecture with Batch Normalization, then evaluated using performance measures such as accuracy, sensitivity, specificity, F1-score, and IoU. The results showed that the U-Net architecture modified with Batch Normalization had successfully segmented CXR images, as seen from all performance measurement values above 94%.