Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Cell Biochem ; 477(5): 1607-1619, 2022 May.
Article in English | MEDLINE | ID: covidwho-1777759

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 2019 and caused coronavirus disease 2019 (COVID-19), which causes pneumonia and severe acute respiratory distress syndrome. It is a highly infectious pathogen that promptly spread. Like other beta coronaviruses, SARS-CoV-2 encodes some non-structural proteins (NSPs), playing crucial roles in viral transcription and replication. NSPs likely have essential roles in viral pathogenesis by manipulating many cellular processes. We performed a sequence-based analysis of NSPs to get insights into their intrinsic disorders, and their functions in viral replication were annotated and discussed in detail. Here, we provide newer insights into the structurally disordered regions of SARS-CoV-2 NSPs. Our analysis reveals that the SARS-CoV-2 proteome has a chunk of the disordered region that might be responsible for increasing its virulence. In addition, mutations in these regions are presumably responsible for drug and vaccine resistance. These findings suggested that the structurally disordered regions of SARS-CoV-2 NSPs might be invulnerable in COVID-19.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2
2.
RSC Adv ; 12(13): 7872-7882, 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1751769

ABSTRACT

Casein kinase 2 (CK2) is a conserved serine/threonine-protein kinase involved in hematopoietic cell survival, cell cycle control, DNA repair, and other cellular processes. It plays a significant role in cancer progression and viral infection. CK2 is considered a potential drug target in cancers and COVID-19 therapy. In this study, we have performed a virtual screening of phytoconstituents from the IMPPAT database to identify some potential inhibitors of CK2. The initial filter was the physicochemical properties of the molecules following the Lipinski rule of five. Then binding affinity calculation, PAINS filter, ADMET, and PASS analyses followed by interaction analysis were carried out to discover nontoxic and better hits. Finally, two compounds, stylopine and dehydroevodiamines with appreciable affinity and specific interaction towards CK2, were identified. Their time-evolution analyses were carried out using all-atom molecular dynamics simulation, principal component analysis and free energy landscape. Altogether, we propose that stylopine and dehydroevodiamines can be further explored in in vitro and in vivo settings to develop anticancer and antiviral therapeutics.

3.
PLoS One ; 16(12): e0261497, 2021.
Article in English | MEDLINE | ID: covidwho-1581739

ABSTRACT

Since the emergence of yellow fever in the Americas and the devastating 1918 influenza pandemic, biologists and clinicians have been drawn to human infecting viruses to understand their mechanisms of infection better and develop effective therapeutics against them. However, the complex molecular and cellular processes that these viruses use to infect and multiply in human cells have been a source of great concern for the scientific community since the discovery of the first human infecting virus. Viral disease outbreaks, such as the recent COVID-19 pandemic caused by a novel coronavirus, have claimed millions of lives and caused significant economic damage worldwide. In this study, we investigated the mechanisms of host-virus interaction and the molecular machinery involved in the pathogenesis of some common human viruses. We also performed a phylogenetic analysis of viral proteins involved in host-virus interaction to understand the changes in the sequence organization of these proteins during evolution for various strains of viruses to gain insights into the viral origin's evolutionary perspectives.


Subject(s)
Host-Pathogen Interactions , Phylogeny , Viral Proteins/genetics , Virus Diseases/virology , HIV Envelope Protein gp160/genetics , Humans
4.
Front Cell Infect Microbiol ; 11: 765039, 2021.
Article in English | MEDLINE | ID: covidwho-1497027

ABSTRACT

A continual rise in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection causing coronavirus disease (COVID-19) has become a global threat. The main problem comes when SARS-CoV-2 gets mutated with the rising infection and becomes more lethal for humankind than ever. Mutations in the structural proteins of SARS-CoV-2, i.e., the spike surface glycoprotein (S), envelope (E), membrane (M) and nucleocapsid (N), and replication machinery enzymes, i.e., main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) creating more complexities towards pathogenesis and the available COVID-19 therapeutic strategies. This study analyzes how a minimal variation in these enzymes, especially in S protein at the genomic/proteomic level, affects pathogenesis. The structural variations are discussed in light of the failure of small molecule development in COVID-19 therapeutic strategies. We have performed in-depth sequence- and structure-based analyses of these proteins to get deeper insights into the mechanism of pathogenesis, structure-function relationships, and development of modern therapeutic approaches. Structural and functional consequences of the selected mutations on these proteins and their association with SARS-CoV-2 virulency and human health are discussed in detail in the light of our comparative genomics analysis.


Subject(s)
COVID-19 , SARS-CoV-2 , Genomics , Humans , Proteomics , Spike Glycoprotein, Coronavirus/genetics
5.
J Biomol Struct Dyn ; : 1-12, 2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1147890

ABSTRACT

A respiratory pandemic known as coronavirus disease-19 (COVID-19) has created havoc since it emerged from Wuhan, China. COVID-19 is caused by a newly emerged SARS coronavirus (SARS-CoV) with increased pathogenicity named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Due to the lack of understanding of the mechanism of pathogenesis, an effective therapeutic option is unavailable. Epidemics described in Unani ancient literature include nazla-e-wabai and humma-e-wabai, and most of the symptoms of COVID-19 resemble nazla-e-wabai. Hence, in light of Unani literature, the treatment of COVID-19 can be managed with the composites prescribed in Unani medicine for nazla-e-wabai. In this study, a structure-based drug design approach was carried out to check the effectiveness of the pharmacologically active constituents of the Unani composites prescribed to treat nazla-e-wabai against SARS-CoV-2. We performed molecular docking of the active constituents of these composites against the main protease (Mpro), a potential drug target in SARS-CoV-2. Using detailed molecular docking analysis, Habb-ul-aas and Tabasheer were identified as potential inhibitors of SARS-CoV-2 Mpro. The active constituents of both these composites bind to the substrate-binding pocket of SARS-CoV-2 Mpro, forming interactions with key residues of the binding pocket. Molecular dynamics (MD) simulation suggested the binding of active constituents of Habb-ul-aas with SARS-CoV-2 Mpro with a strong affinity as compared to the constituents of Tabasheer. Thus, this study sheds light on the use of these Unani composites in COVID-19 therapeutics.Communicated by Ramaswamy H. Sarma.

6.
Saudi J Biol Sci ; 28(4): 2423-2431, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1051946

ABSTRACT

Coronavirus disease 2019 (COVID-19) has emerged from China and globally affected the entire population through the human-to-human transmission of a newly emerged virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The genome of SARS-CoV-2 encodes several proteins that are essential for multiplication and pathogenesis. The main protease (Mpro or 3CLpro) of SARS-CoV-2 plays a central role in its pathogenesis and thus is considered as an attractive drug target for the drug design and development of small-molecule inhibitors. We have employed an extensive structure-based high-throughput virtual screening to discover potential natural compounds from the ZINC database which could inhibit the Mpro of SARS-CoV-2. Initially, the hits were selected on the basis of their physicochemical and drug-like properties. Subsequently, the PAINS filter, estimation of binding affinities using molecular docking, and interaction analyses were performed to find safe and potential inhibitors of SARS-CoV-2 Mpro. We have identified ZINC02123811 (1-(3-(2,5,9-trimethyl-7-oxo-3-phenyl-7H-furo[3,2-g]chromen-6-yl)propanoyl)piperidine-4-carboxamide), a natural compound bearing appreciable affinity, efficiency, and specificity towards the binding pocket of SARS-CoV-2 Mpro. The identified compound showed a set of drug-like properties and preferentially binds to the active site of SARS-CoV-2 Mpro. All-atom molecular dynamics (MD) simulations were performed to evaluate the conformational dynamics, stability and interaction mechanism of Mpro with ZINC02123811. MD simulation results indicated that Mpro with ZINC02123811 forms a stable complex throughout the trajectory of 100 ns. These findings suggest that ZINC02123811 may be further exploited as a promising scaffold for the development of potential inhibitors of SARS-CoV-2 Mpro to address COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL