Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Bradbury, Charlotte A. M. D. PhD, Lawler, Patrick R. M. D. M. P. H.; Stanworth, Simon J. M. D.; McVerry, Bryan J. M. D.; McQuilten, Zoe PhD, Higgins, Alisa M. PhD, Mouncey, Paul R. MSc, Al-Beidh, Farah PhD, Rowan, Kathryn M. PhD, Berry, Lindsay R. PhD, Lorenzi, Elizabeth PhD, Zarychanski, Ryan M. D. MSc, Arabi, Yaseen M. M. D.; Annane, Djillali M. D. PhD, Beane, Abi PhD, van Bentum-Puijk, Wilma MSc, Bhimani, Zahra M. P. H.; Bihari, Shailesh PhD, M Bonten, Marc J. M. D. PhD, Brunkhorst, Frank M. M. D. PhD, Buzgau, Adrian MSc, Buxton, Meredith PhD, Carrier, Marc M. D. MSc, Cheng, Allen C. Mbbs PhD, Cove, Matthew Mbbs, Detry, Michelle A. PhD, Estcourt, Lise J. MBBCh PhD, Fitzgerald, Mark PhD, Girard, Timothy D. M. D. Msci, Goligher, Ewan C. M. D. PhD, Goossens, Herman PhD, Haniffa, Rashan PhD, Hills, Thomas Mbbs PhD, Huang, David T. M. D. M. P. H.; Horvat, Christopher M. M. D.; Hunt, Beverley J. M. D. PhD, Ichihara, Nao M. D. M. P. H. PhD, Lamontagne, Francois M. D.; Leavis, Helen L. M. D. PhD, Linstrum, Kelsey M. M. S.; Litton, Edward M. D. PhD, Marshall, John C. M. D.; McAuley, Daniel F. M. D.; McGlothlin, Anna PhD, McGuinness, Shay P. M. D.; Middeldorp, Saskia M. D. PhD, Montgomery, Stephanie K. MSc, Morpeth, Susan C. M. D. PhD, Murthy, Srinivas M. D.; Neal, Matthew D. M. D.; Nichol, Alistair D. M. D. PhD, Parke, Rachael L. PhD, Parker, Jane C. B. N.; Reyes, Luis F. M. D. PhD, Saito, Hiroki M. D. M. P. H.; Santos, Marlene S. M. D. Mshs, Saunders, Christina T. PhD, Serpa-Neto, Ary PhD MSc M. D.; Seymour, Christopher W. M. D. MSc, Shankar-Hari, Manu M. D. PhD, Singh, Vanessa, Tolppa, Timo Mbbs, Turgeon, Alexis F. M. D. MSc, Turner, Anne M. M. P. H.; van de Veerdonk, Frank L. M. D. PhD, Green, Cameron MSc, Lewis, Roger J. M. D. PhD, Angus, Derek C. M. D. M. P. H.; McArthur, Colin J. M. D.; Berry, Scott PhD, G Derde, Lennie P. M. D. PhD, Webb, Steve A. M. D. PhD, Gordon, Anthony C. Mbbs M. D..
JAMA ; 327(13):1247, 2022.
Article in English | ProQuest Central | ID: covidwho-1801957

ABSTRACT

Importance The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control;n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures The primary end point was organ support–free days (days alive and free of intensive care unit–based respiratory or cardiovascular organ support) within 21 days, ranging from −1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support–free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years;521 [33.6%] female). The median for organ support–free days was 7 (IQR, −1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23];95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62];adjusted absolute difference, 5% [95% CrI, −0.2% to 9.5%];97% posterior probability of efficacy). Among survivors, the median for organ support–free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28];adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%];99.4% probability of harm). Conclusions and Relevance Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support–free days within 21 days.

3.
JMIR Res Protoc ; 2022 Apr 14.
Article in English | MEDLINE | ID: covidwho-1789311

ABSTRACT

BACKGROUND: Lessening Organ Dysfunction with VITamin C (LOVIT) is a blinded multicentre randomized clinical trial that compared high-dose intravenous vitamin C to placebo in patients admitted to the intensive care unit with proven or suspected infection as the main diagnosis and receiving a vasopressor. OBJECTIVE: To describe a pre-specified statistical analysis plan (SAP) for LOVIT, written prior to unblinding and locking of the trial database. METHODS: The SAP was designed by the LOVIT principal investigators and statisticians and approved by the steering committee and coinvestigators. The SAP defines the primary and secondary outcomes and describes the planned primary, secondary, and subgroup analyses. RESULTS: The SAP includes a draft participant flow diagram, tables, and planned figures. The primary outcome is a composite of mortality and persistent organ dysfunction (receipt of mechanical ventilation, vasopressors or new renal replacement therapy) at 28 days, where day 1 is the day of randomization. All analyses will use a frequentist statistical framework. The analysis of the primary outcome will estimate the risk ratio and 95% confidence interval in a generalized linear mixed model with binomial distribution and log link and considering site as a random effect. We will perform a secondary analysis adjusting for pre-specified baseline clinical variables. Subgroup analyses will include age, sex, frailty, severity of illness, Sepsis-3 definition of septic shock, baseline ascorbic acid level, and COVID-19 status. CONCLUSIONS: We have developed a SAP for the LOVIT trial and will adhere to it in the analysis phase. CLINICALTRIAL: ClinicalTrials.gov identifier: NCT03680274 (21 September 2018).

4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331783

ABSTRACT

Inflammation is a complex physiological process triggered in response to harmful stimuli. It involves specialized cells of the immune system able to clear sources of cell injury and damaged tissues to promote repair. Excessive inflammation can occur as a result of infections and is a hallmark of several diseases. The molecular basis underlying inflammatory responses are not fully understood. Here, we show that the cell surface marker CD44, which characterizes activated immune cells, acts as a metal transporter that promotes copper uptake. We identified a chemically reactive pool of copper(II) in mitochondria of inflammatory macrophages that catalyzes NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD + enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with a rationally-designed dimer of metformin triggers distinct metabolic and epigenetic states that oppose macrophage activation. This drug reduces inflammation in mouse models of bacterial and viral (SARS-CoV-2) infections, improves well-being and increases survival. Identifying mechanisms that regulate the plasticity of immune cells provides the means to develop next-generation medicine. Our work illuminates the central role of copper as a regulator of cell plasticity and unveils a new therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.

5.
JAMA ; 327(13): 1247-1259, 2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-1750260

ABSTRACT

Importance: The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective: To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants: In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions: Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control; n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of intensive care unit-based respiratory or cardiovascular organ support) within 21 days, ranging from -1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support-free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results: The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years; 521 [33.6%] female). The median for organ support-free days was 7 (IQR, -1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23]; 95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62]; adjusted absolute difference, 5% [95% CrI, -0.2% to 9.5%]; 97% posterior probability of efficacy). Among survivors, the median for organ support-free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28]; adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%]; 99.4% probability of harm). Conclusions and Relevance: Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support-free days within 21 days. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19 , Venous Thromboembolism , Adult , Anticoagulants/therapeutic use , Aspirin/adverse effects , Bayes Theorem , Critical Illness/therapy , Female , Hemorrhage/chemically induced , Humans , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Respiration, Artificial , Venous Thromboembolism/drug therapy
6.
Crit Care ; 25(1): 404, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1745432

ABSTRACT

Identifying new effective treatments for the acute respiratory distress syndrome (ARDS), including COVID-19 ARDS, remains a challenge. The field of ARDS investigation is moving increasingly toward innovative approaches such as the personalization of therapy to biological and clinical sub-phenotypes. Additionally, there is growing recognition of the importance of the global context to identify effective ARDS treatments. This review highlights emerging opportunities and continued challenges for personalizing therapy for ARDS, from identifying treatable traits to innovative clinical trial design and recognition of patient-level factors as the field of critical care investigation moves forward into the twenty-first century.


Subject(s)
Precision Medicine , Respiratory Distress Syndrome/therapy , COVID-19/complications , Clinical Trials as Topic , Humans , Respiratory Distress Syndrome/virology
7.
Immun Inflamm Dis ; 10(4): e597, 2022 04.
Article in English | MEDLINE | ID: covidwho-1739166

ABSTRACT

BACKGROUND: Systemic reactivation of Epstein-Barr virus (EBV) may occur in novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, the clinical consequences of EBV reactivation remain uncertain. METHODS: In this retrospective study, we screened 1314 patients with confirmed COVID-19 who died or were discharged between January 1, 2020 and March 12, 2020, in Wuhan Infectious Disease Hospital, Wuhan, China. Patients who had complete data for EBV serology and cytomegalovirus (CMV) serology were eligible. Serum levels of viral capsid antigen (VCA)-immunoglobulin G (IgG), Epstein-Barr nuclear antigen-IgG, VCA-IgM, early antigen (EA)-IgG, CMV-IgG, and CMV-IgM were compared between survivors and nonsurvivors. Dynamic changes of laboratory tests and outcomes were compared in patients with and without ganciclovir treatment. We used 1:1 matching based on age, gender, and illness severity to balance baseline characteristics. RESULTS: EBV reactivation was present in 55 of 217 patients. EBV reactivation was associated with age (57.91 [13.19] vs. 50.28 [12.66] years, p < .001), female gender (31 [56%] vs. 60 [37%], p = .02). Patients with EBV reactivation have statistically nonsignificant higher mortality rate (12 [22%] vs. 18 [11%], p = .08). EA-IgG levels were significantly higher in nonsurvivors than in survivors (median difference: -0.00005, 95% confidence interval, CI [-3.10, 0.00], p = .05). As compared to patients with COVID-19 who did not receive ganciclovir therapy, ganciclovir-treated patients had improved survival rate (0.98, 95% CI [0.95, 1.00] vs. 0.88, 95% CI [0.81, 0.95], p = .01). Hemoglobin (p < .001) and prealbumin (p = .02) levels were significantly higher in ganciclovir-treated patients. CONCLUSION: A high proportion of COVID-19 patients had EBV reactivation that may be associated with an increased risk of death. Whether treatment with ganciclovir may decrease the mortality of COVID-19 patients complicated with EBV reactivation warrants to be addressed in a placebo-controlled randomized trial in the future.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , COVID-19/drug therapy , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/drug therapy , Female , Ganciclovir/therapeutic use , Herpesvirus 4, Human/physiology , Humans , Retrospective Studies , SARS-CoV-2
8.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1709312

ABSTRACT

We develop a population pharmacokinetic model for hydroxychloroquine (HCQ) and three of its metabolites (desethylhydroxychloroquine, Des HCQ; desethylchloroquine, DesCQ; and didesethylchloroquine, didesCQ) in COVID-19 patients in order to determine whether a pharmacokinetic (PK)/pharmacodynamic (PD) relationship was present. The population PK of HCQ was described using non-linear mixed effects modelling. The duration of hospitalization, the number of deaths, and poor clinical outcomes (death, transfer to ICU, or hospitalization ≥ 10 d) were evaluated as PD parameters. From 100 hospitalized patients (age = 60.7 ± 16 y), 333 BHCQ and M were available for analysis. The data for BHCQ were best described by a four-compartment model with a first-order input (KA) and a first-order output. For M, the better model of the data used one compartment for each metabolite with a first-order input from HCQ and a first-order output. The fraction of HCQ converted to the metabolites was 75%. A significant relationship was observed between the duration of hospitalization and BHCQ at 48 h (r2 = 0.12; p = 0.0052) or 72 h (r2 = 0.16; p = 0.0012). At 48 h or 72 h, 87% or 91% of patients vs. 63% or 62% had a duration < 25 d with a BHCQ higher or below 200 µg/L, respectively. Clinical outcome was significantly related to BHCQ at 48 h (good outcome 369 +/- 181 µg/L vs. poor 285 +/- 144 µg/L; p = 0.0441) but not at 72 h (407 +/- 207 µg/L vs. 311 +/- 174 µg/L; p = 0.0502). The number of deaths was not significantly different according to the trough concentration (p = 0.972 and 0.836 for 48 h and 72 h, respectively).

9.
Crit Care ; 26(1): 48, 2022 02 21.
Article in English | MEDLINE | ID: covidwho-1703362

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced acute respiratory distress syndrome (ARDS) causes high mortality. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have potentially relevant immune-modulatory properties, whose place in ARDS treatment is not established. This phase 2b trial was undertaken to assess the efficacy of UC-MSCs in patients with SARS-CoV-2-induced ARDS. METHODS: This multicentre, double-blind, randomized, placebo-controlled trial (STROMA-CoV-2) recruited adults (≥ 18 years) with SARS-CoV-2-induced early (< 96 h) mild-to-severe ARDS in 10 French centres. Patients were randomly assigned to receive three intravenous infusions of 106 UC-MSCs/kg or placebo (0.9% NaCl) over 5 days after recruitment. For the modified intention-to-treat population, the primary endpoint was the partial pressure of oxygen to fractional inspired oxygen (PaO2/FiO2)-ratio change between baseline (day (D) 0) and D7. RESULTS: Among the 107 patients screened for eligibility from April 6, 2020, to October 29, 2020, 45 were enrolled, randomized and analyzed. PaO2/FiO2 changes between D0 and D7 did not differ significantly between the UC-MSCs and placebo groups (medians [IQR] 54.3 [- 15.5 to 93.3] vs 25.3 [- 33.3 to 104.6], respectively; ANCOVA estimated treatment effect 7.4, 95% CI - 44.7 to 59.7; P = 0.77). Six (28.6%) of the 21 UC-MSCs recipients and six of 24 (25%) placebo-group patients experienced serious adverse events, none of which were related to UC-MSCs treatment. CONCLUSIONS: D0-to-D7 PaO2/FiO2 changes for intravenous UC-MSCs-versus placebo-treated adults with SARS-CoV-2-induced ARDS did not differ significantly. Repeated UC-MSCs infusions were not associated with any serious adverse events during treatment or thereafter (until D28). Larger trials enrolling patients earlier during the course of their ARDS are needed to further assess UC-MSCs efficacy in this context. TRIAL REGISTRATION: NCT04333368. Registered 01 April 2020, https://clinicaltrials.gov/ct2/history/NCT04333368 .


Subject(s)
COVID-19 , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Double-Blind Method , Humans , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Treatment Outcome
10.
Vieillard-Baron, Antoine, Flicoteaux, Rémi, Salmona, Maud, Annane, Djillali, Ayed, Soufia, Azoulay, Elie, Bellaiche, Raphael, Beloucif, Sadek, Berti, Enora, Bertier, Astrid, Besset, Sébastien, Bret, Marlène, Cariou, Alain, Carpentier, Christophe, Chaouch, Oussama, Chariot, Appoline, Charron, Cyril, Charpentier, Julien, Cheurfa, Cherifa, Cholley, Bernard, Clerc, Sébastien, Combes, Alain, Chousterman, Benjamin, Cohen, Yves, Constantin, Jean-Michel, Damoisel, Charles, Darmon, Michael, Degos, Vincent, D’Ableiges, Bertrand De Maupeou, Demeret, Sophie, Montmollin, Etienne De, Demoule, Alexandre, Depret, Francois, Diehl, Jean-Luc, Djibré, Michel, Do, Chung-Hi, Dudoignon, Emmanuel, Duranteau, Jacques, Fartoukh, Muriel, Fieux, Fabienne, Gayat, Etienne, Gennequin, Mael, Guidet, Bertrand, Gutton, Christophe, Hamada, Sophie, Heming, Nicholas, Jouffroy, Romain, Keita-Meyer, Hawa, Langeron, Olivier, Lortat-Jacob, Brice, Marey, Jonathan, Mebazaa, Alexandre, Megarbane, Bruno, Mekontso-Dessap, Armand, Mira, Jean-Paul, Molle, Julie, Mongardon, Nicolas, Montravers, Philippe, Morelot-Panzini, Capucine, Nemlaghi, Safaa, Nguyen, Bao-long, Parrot, Antoine, Pasqualotto, Romain, Peron, Nicolas, Picard, Lucile, de Chambrun, Marc Pineton, Planquette, Benjamin, Plaud, Benoit, Pons, Stéphanie, Quesnel, Christophe, Raphalen, Jean-Herlé, Razazi, Keyvan, Ricard, Jean-Damien, Roche, Anne, Rohaut, Benjamin, Roux, Damien, Savale, Laurent, Sobotka, Jennifer, Teboul, Jean-Louis, Timsit, Jean-François, Voiriot, Guillaume, Weiss, Emmanuel, Wildenberg, Lucille, Zogheib, Elie, Riou, Bruno, Batteux, Frédéric.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327150

ABSTRACT

Importance Information about the severity of Omicron is scarce. Objective To report the respective risk of ICU admission in patients hospitalized with Delta and Omicron variants and to compare the characteristics and disease severity of critically ill patients infected with both variants according to vaccination status. Design Analysis from the APHP database, called Reality, prospectively recording the following information in consecutive patients admitted in the ICU for COVID-19: age, sex, immunosuppression, vaccination, pneumonia, need for invasive mechanical ventilation, time between symptom onset and ICU admission, and in-ICU mortality. Retrospective analysis on an administrative database, “Système d’Information pour le Suivi des Victimes” (SI-VIC), which lists hospitalized COVID-19 patients. Setting 39 hospitals in the Paris area from APHP group. Participants Patients hospitalized from December 1, 2021 to January 18, 2022 for COVID-19. Main outcomes and measures Risk of ICU admission was evaluated in 3761 patients and Omicron cases were compared to Delta cases in the ICU in 888 consecutive patients. Results On January 18, 45% of patients in the ICU and 63.8% of patients in conventional hospital units were infected with the Omicron variant (p < 0.001). The risk of ICU admission with Omicron was reduced by 64% than with Delta (9.3% versus 25.8% of cases, respectively, p < 0.001). In critically ill patients, 400 had the Delta variant, 229 the Omicron variant, 98 had an uninformative variant screening test and 161 did not have information on variant screening test. 747 patients (84.1%) were admitted for pneumonia. Compared to patients infected with Delta, Omicron patients were more vaccinated (p<0.001), even with 3 doses, more immunocompromised (p<0.001), less admitted for pneumonia (p<0.001), especially when vaccinated (62.1% in vaccinated versus 80.7% in unvaccinated, p<0.001), and less invasively ventilated (p=0.02). Similar results were found in the subgroup of pneumonia but Omicron cases were older. Unadjusted in-ICU mortality did not differ between Omicron and Delta cases, neither in the overall population (20.0% versus 27.9%, p = 0.08), nor in patients with pneumonia (31.6% versus 29.7%, respectively) where adjusted in-ICU mortality did not differ according to the variant (HR 1.43 95%CI [0.89;2.29], p=0.14). Conclusion and relevance Compared to the Delta variant, the Omicron variant is less likely to result in ICU admission and less likely to be associated with pneumonia. However, when patients with the Omicron variant are admitted for pneumonia, the severity seems similar to that of patients with the Delta variant, with more immunocompromised and vaccinated patients and no difference in adjusted in-ICU mortality. Further studies are needed to confirm our results.

11.
Emerg Infect Dis ; 28(2): 492-493, 2022 02.
Article in English | MEDLINE | ID: covidwho-1650372

Subject(s)
COVID-19 , Humans , SARS-CoV-2
12.
Radiol Case Rep ; 17(3): 843-846, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1611991

ABSTRACT

Acute hypoxemic respiratory failure (AHRF) is a major complication of COVID-19 pneumonia and parasternal intercostal muscle thickening may be used as a biomarker to assess inspiratory effort. We report the case of a high utilization of parasternal intercostal muscle prior to the introduction of invasive ventilation in a 66-year old male none vaccinated COVID -19 patient admitted in hospital because of AHRF.

14.
Crit Care ; 25(1): 404, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1533274

ABSTRACT

Identifying new effective treatments for the acute respiratory distress syndrome (ARDS), including COVID-19 ARDS, remains a challenge. The field of ARDS investigation is moving increasingly toward innovative approaches such as the personalization of therapy to biological and clinical sub-phenotypes. Additionally, there is growing recognition of the importance of the global context to identify effective ARDS treatments. This review highlights emerging opportunities and continued challenges for personalizing therapy for ARDS, from identifying treatable traits to innovative clinical trial design and recognition of patient-level factors as the field of critical care investigation moves forward into the twenty-first century.


Subject(s)
Precision Medicine , Respiratory Distress Syndrome/therapy , COVID-19/complications , Clinical Trials as Topic , Humans , Respiratory Distress Syndrome/virology
15.
JAMA ; 326(17): 1690-1702, 2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1525402

ABSTRACT

IMPORTANCE: The evidence for benefit of convalescent plasma for critically ill patients with COVID-19 is inconclusive. OBJECTIVE: To determine whether convalescent plasma would improve outcomes for critically ill adults with COVID-19. DESIGN, SETTING, AND PARTICIPANTS: The ongoing Randomized, Embedded, Multifactorial, Adaptive Platform Trial for Community-Acquired Pneumonia (REMAP-CAP) enrolled and randomized 4763 adults with suspected or confirmed COVID-19 between March 9, 2020, and January 18, 2021, within at least 1 domain; 2011 critically ill adults were randomized to open-label interventions in the immunoglobulin domain at 129 sites in 4 countries. Follow-up ended on April 19, 2021. INTERVENTIONS: The immunoglobulin domain randomized participants to receive 2 units of high-titer, ABO-compatible convalescent plasma (total volume of 550 mL ± 150 mL) within 48 hours of randomization (n = 1084) or no convalescent plasma (n = 916). MAIN OUTCOMES AND MEASURES: The primary ordinal end point was organ support-free days (days alive and free of intensive care unit-based organ support) up to day 21 (range, -1 to 21 days; patients who died were assigned -1 day). The primary analysis was an adjusted bayesian cumulative logistic model. Superiority was defined as the posterior probability of an odds ratio (OR) greater than 1 (threshold for trial conclusion of superiority >99%). Futility was defined as the posterior probability of an OR less than 1.2 (threshold for trial conclusion of futility >95%). An OR greater than 1 represented improved survival, more organ support-free days, or both. The prespecified secondary outcomes included in-hospital survival; 28-day survival; 90-day survival; respiratory support-free days; cardiovascular support-free days; progression to invasive mechanical ventilation, extracorporeal mechanical oxygenation, or death; intensive care unit length of stay; hospital length of stay; World Health Organization ordinal scale score at day 14; venous thromboembolic events at 90 days; and serious adverse events. RESULTS: Among the 2011 participants who were randomized (median age, 61 [IQR, 52 to 70] years and 645/1998 [32.3%] women), 1990 (99%) completed the trial. The convalescent plasma intervention was stopped after the prespecified criterion for futility was met. The median number of organ support-free days was 0 (IQR, -1 to 16) in the convalescent plasma group and 3 (IQR, -1 to 16) in the no convalescent plasma group. The in-hospital mortality rate was 37.3% (401/1075) for the convalescent plasma group and 38.4% (347/904) for the no convalescent plasma group and the median number of days alive and free of organ support was 14 (IQR, 3 to 18) and 14 (IQR, 7 to 18), respectively. The median-adjusted OR was 0.97 (95% credible interval, 0.83 to 1.15) and the posterior probability of futility (OR <1.2) was 99.4% for the convalescent plasma group compared with the no convalescent plasma group. The treatment effects were consistent across the primary outcome and the 11 secondary outcomes. Serious adverse events were reported in 3.0% (32/1075) of participants in the convalescent plasma group and in 1.3% (12/905) of participants in the no convalescent plasma group. CONCLUSIONS AND RELEVANCE: Among critically ill adults with confirmed COVID-19, treatment with 2 units of high-titer, ABO-compatible convalescent plasma had a low likelihood of providing improvement in the number of organ support-free days. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
COVID-19/therapy , ABO Blood-Group System , Adult , Aged , Critical Illness/therapy , Female , Hospital Mortality , Humans , Immunization, Passive , Length of Stay , Logistic Models , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Treatment Failure , Vasoconstrictor Agents/therapeutic use
17.
iScience ; 24(12): 103478, 2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1521098

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly rampaged worldwide, causing a pandemic of coronavirus disease (COVID -19), but the biology of SARS-CoV-2 remains under investigation. We demonstrate that both SARS-CoV-2 spike protein and human coronavirus 229E (hCoV-229E) or its purified S protein, one of the main viruses responsible for the common cold, induce the transient opening of Pannexin-1 (Panx-1) channels in human lung epithelial cells. However, the Panx-1 channel opening induced by SARS-CoV-2 is greater and more prolonged than hCoV-229E/S protein, resulting in an enhanced ATP, PGE2, and IL-1ß release. Analysis of lung lavages and tissues indicate that Panx-1 mRNA expression is associated with increased ATP, PGE2, and IL-1ß levels. Panx-1 channel opening induced by SARS-CoV-2 spike protein is angiotensin-converting enzyme 2 (ACE-2), endocytosis, and furin dependent. Overall, we demonstrated that Panx-1 channel is a critical contributor to SARS-CoV-2 infection and should be considered as an alternative therapy.

19.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292327

ABSTRACT

Background: The impact of corticosteroids on severe patients with coronavirus disease 2019 (COVID-19)/ chronic hepatitis B virus (HBV) co-infection is currently unknown. We aimed to investigate effect of corticosteroid on these subgroup patients. Methods: . In this retrospective multicenter study including 5447 confirmed COVID-19 patients from Jan 1, 2020 to Apr 18, 2020, severe patients with COVID-19/HBV co-infection were identified. To minimize the bias of confounding variables on effect of corticosteroid treatment, inverse probability of treatment weighting (IPTW) based on propensity score was employed. Results: . The prevalence of HBV co-infection in hospitalization COVID-19 patients was 4.1%. 105 severe patients with COVID-19/HBV co-infection were enrolled (median age 62 years, 57.1% male). Fifty-five patients received corticosteroid treatment and 50 patients did not. Corticosteroid treatment was associated with high D-dimer level, neutrophil count (all P <0.05). With IPTW analysis, corticosteroid treatment worsen acute liver injury (OR, 1.767, 95%CI, 1.018-3.065, P =0.043). Corticosteroids might delay SARS-CoV-2 viral RNA clearance (OR, 4.963, 95%CI, 2.717-9.065, P <0.001). The 28-day and in-hospital mortality were both significantly higher in corticosteroid treatment group than non-corticosteroid treatment group (OR, 8.738, 95%CI, 2.826-27.022, P <0.001;OR, 10.122, 95%CI, 3.291-31.129, P <0.001, respectively). In multivariable analysis, higher D-dimer level (>1µg/ml) (OR, 10.686, 95%CI, 2.421-47.159, P =0.002) and corticosteroid therapy (OR, 11.236, 95%CI, 1.273-99.154, P =0.029) were independently associated with 28-day mortality. Methylprednisolone dose per day and cumulative dose in non-survivors was significantly higher than in survivors. Conclusions: . In severe patients with COVID-19/HBV co-infection, corticosteroid treatment may increase mortality. Therefore, corticosteroid therapy should be prescribed with caution in the subset of patients.

20.
Intensive Care Med ; 46(12): 2284-2296, 2020 12.
Article in English | MEDLINE | ID: covidwho-1451948

ABSTRACT

Current literature addressing the pharmacological principles guiding glucocorticoid (GC) administration in ARDS is scant. This paucity of information may have led to the heterogeneity of treatment protocols and misinterpretation of available findings. GCs are agonist compounds that bind to the GC receptor (GR) producing a pharmacological response. Clinical efficacy depends on the magnitude and duration of exposure to GR. We updated the meta-analysis of randomized trials investigating GC treatment in ARDS, focusing on treatment protocols and response. We synthesized the current literature on the role of the GR in GC therapy including genomic and non-genomic effects, and integrated current clinical pharmacology knowledge of various GCs, including hydrocortisone, methylprednisolone and dexamethasone. This review addresses the role dosage, timing of initiation, mode of administration, duration, and tapering play in achieving optimal response to GC therapy in ARDS. Based on RCTs' findings, GC plasma concentration-time profiles, and pharmacodynamic studies, optimal results are most likely achievable with early intervention, an initial bolus dose to achieve close to maximal GRα saturation, followed by a continuous infusion to maintain high levels of response throughout the treatment period. In addition, patients receiving similar GC doses may experience substantial between-patient variability in plasma concentrations affecting clinical response. GC should be dose-adjusted and administered for a duration targeting clinical and laboratory improvement, followed by dose-tapering to achieve gradual recovery of the suppressed hypothalamic-pituitary-adrenal (HPA) axis. These findings have practical clinical relevance. Future RCTs should consider these pharmacological principles in the study design and interpretation of findings.


Subject(s)
Glucocorticoids , Respiratory Distress Syndrome , Humans , Hypothalamo-Hypophyseal System , Methylprednisolone , Pituitary-Adrenal System , Respiratory Distress Syndrome/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL