Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.20.453077


Establishment of the interferon (IFN)-mediated antiviral state provides a crucial initial line of defense against viral infection. Numerous genes that contribute to this antiviral state remain to be identified. Using a loss-of-function strategy, we screened an original library of 1156 siRNAs targeting 386 individual curated human genes in stimulated microglial cells infected with Zika virus (ZIKV), an emerging RNA virus that belongs to the flavivirus genus. The screen recovered twenty-one potential host proteins that modulate ZIKV replication in an IFN-dependent manner, including the previously known IFITM3 and LY6E. Further characterization contributed to delineate the spectrum of action of these genes towards other pathogenic RNA viruses, including Hepatitis C virus and SARS-CoV-2. Our data revealed that APOL3 acts as a proviral factor for ZIKV and several other related and unrelated RNA viruses. In addition, we showed that MTA2, a chromatin remodeling factor, possesses potent flavivirus-specific antiviral functions. Our work identified previously unrecognized genes that modulate the replication of RNA viruses in an IFN-dependent way, opening new perspectives to target weakness points in the life cycle of these viruses.

Hepatitis C
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.21.214049


We developed a potent vaccination strategy, based on lentiviral vector (LV), capable of inducing neutralizing antibodies specific to the Spike glycoprotein (S) of SARS-CoV-2, the etiologic agent of CoronaVirus Disease 2019 (COVID-19). Among several LV encoding distinct variants of S, a single one encoding the full-length, membrane anchored S (LV::SFL) triggered high antibody titers in mice, with neutralization activities comparable to patients recovered from COVID-19. LV::SFL systemic vaccination in mice, in which the expression of the CoV2 receptor hACE2 was induced by transduction of the respiratory tract cells by an adenoviral type 5 (Ad5) vector, despite an intense serum neutralizing activity, only {approx}1 log10 reduction of lung viral loads was observed after SARS-CoV2 challenge. We thus explored the strategy of targeting the immune response to the upper respiratory tract through an intranasal boost administration. Even though, after a prime and target regimen, the systemic neutralizing activity did not increase substantially, {approx}5 log10 decrease in lung viral loads was achieved, with the loads in some animals under the limit of detection of a highly sensitive RT-PCR assay. The conferred protection also avoided largely pulmonary inflammation. We confirmed the vaccine efficacy and inhibition of lung inflammation using both integrative and non-integrative LV platforms in golden hamsters, naturally permissive to SARS-CoV2 replication and restituting human COVID-19 physiopathology. Our results provide the proof-of-principle evidence of marked prophylactic effects of an LV-based vaccination strategy against SARS-CoV-2 in two pre-clinical animal models and designate the intranasal LV::SFL-based immunization as a vigorous and promising vaccine approach against COVID-19.

COVID-19 , Protein S Deficiency