Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Sci Rep ; 12(1): 889, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1630723

ABSTRACT

Predicting the severity of COVID-19 remains an unmet medical need. Our objective was to develop a blood-based host-gene-expression classifier for the severity of viral infections and validate it in independent data, including COVID-19. We developed a logistic regression-based classifier for the severity of viral infections and validated it in multiple viral infection settings including COVID-19. We used training data (N = 705) from 21 retrospective transcriptomic clinical studies of influenza and other viral illnesses looking at a preselected panel of host immune response messenger RNAs. We selected 6 host RNAs and trained logistic regression classifier with a cross-validation area under curve of 0.90 for predicting 30-day mortality in viral illnesses. Next, in 1417 samples across 21 independent retrospective cohorts the locked 6-RNA classifier had an area under curve of 0.94 for discriminating patients with severe vs. non-severe infection. Next, in independent cohorts of prospectively (N = 97) and retrospectively (N = 100) enrolled patients with confirmed COVID-19, the classifier had an area under curve of 0.89 and 0.87, respectively, for identifying patients with severe respiratory failure or 30-day mortality. Finally, we developed a loop-mediated isothermal gene expression assay for the 6-messenger-RNA panel to facilitate implementation as a rapid assay. With further study, the classifier could assist in the risk assessment of COVID-19 and other acute viral infections patients to determine severity and level of care, thereby improving patient management and reducing healthcare burden.


Subject(s)
COVID-19 , Gene Expression Regulation , RNA, Messenger/blood , SARS-CoV-2/metabolism , Acute Disease , COVID-19/blood , COVID-19/mortality , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies
2.
Journal of the Endocrine Society ; 5(Supplement_1):A835-A836, 2021.
Article in English | PMC | ID: covidwho-1221835

ABSTRACT

Background: Lymphopenia is a key feature of immune dysfunction in bacterial sepsis and COVID-19 patients and is associated with poor clinical outcomes, but the cause is largely unknown. These severely ill patients may also present with thyroid function abnormalities, so-called non-thyroidal illness syndrome (NTIS), and several studies have suggested that TSH, thyroxin (T4) and triiodothyronine (T3) play a crucial role in the homeostatic regulation and function of lymphocyte populations.

3.
J Clin Endocrinol Metab ; 106(7): 1994-2009, 2021 06 16.
Article in English | MEDLINE | ID: covidwho-1133638

ABSTRACT

CONTEXT: Lymphopenia is a key feature of immune dysfunction in patients with bacterial sepsis and coronavirus disease 2019 (COVID-19) and is associated with poor clinical outcomes, but the cause is largely unknown. Severely ill patients may present with thyroid function abnormalities, so-called nonthyroidal illness syndrome, and several studies have linked thyrotropin (thyroid stimulating hormone, TSH) and the thyroid hormones thyroxine (T4) and 3,5,3'-triiodothyronine (T3) to homeostatic regulation and function of lymphocyte populations. OBJECTIVE: This work aimed to test the hypothesis that abnormal thyroid function correlates with lymphopenia in patients with severe infections. METHODS: A retrospective analysis of absolute lymphocyte counts, circulating TSH, T4, free T4 (FT4), T3, albumin, and inflammatory biomarkers was performed in 2 independent hospitalized study populations: bacterial sepsis (n = 224) and COVID-19 patients (n = 161). A subgroup analysis was performed in patients with severe lymphopenia and normal lymphocyte counts. RESULTS: Only T3 significantly correlated (ρ = 0.252) with lymphocyte counts in patients with bacterial sepsis, and lower concentrations were found in severe lymphopenic compared to nonlymphopenic patients (n = 56 per group). Severe lymphopenic COVID-19 patients (n = 17) showed significantly lower plasma concentrations of TSH, T4, FT4, and T3 compared to patients without lymphopenia (n = 18), and demonstrated significantly increased values of the inflammatory markers interleukin-6, C-reactive protein, and ferritin. Remarkably, after 1 week of follow-up, the majority (12 of 15) of COVID-19 patients showed quantitative recovery of their lymphocyte numbers, whereas TSH and thyroid hormones remained mainly disturbed. CONCLUSION: Abnormal thyroid function correlates with lymphopenia in patients with severe infections, like bacterial sepsis and COVID-19, but future studies need to establish whether a causal relationship is involved.


Subject(s)
COVID-19/complications , Euthyroid Sick Syndromes/diagnosis , Lymphopenia/immunology , Sepsis/complications , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/immunology , Euthyroid Sick Syndromes/blood , Euthyroid Sick Syndromes/immunology , Female , Greece , Humans , Lymphocyte Count , Lymphopenia/blood , Lymphopenia/diagnosis , Male , Netherlands , Retrospective Studies , SARS-CoV-2/immunology , Sepsis/blood , Sepsis/immunology , Thyroid Hormones/blood , Thyroid Hormones/immunology , Thyrotropin/blood , Thyrotropin/immunology
4.
Genome Med ; 13(1): 7, 2021 01 13.
Article in English | MEDLINE | ID: covidwho-1027902

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. METHODS: In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. RESULTS: Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. CONCLUSIONS: Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.


Subject(s)
COVID-19/pathology , Neutrophils/metabolism , Transcriptome , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Case-Control Studies , Down-Regulation , Drug Repositioning , Humans , Neutrophils/cytology , Neutrophils/immunology , Phenotype , Principal Component Analysis , RNA/blood , RNA/chemistry , RNA/metabolism , Sequence Analysis, RNA , Severity of Illness Index , Up-Regulation
7.
iScience ; 24(1): 101947, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-974141

ABSTRACT

The pandemic 2019 novel coronavirus disease (COVID-19) shares certain clinical characteristics with other acute viral infections. We studied the whole-blood transcriptomic host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using RNAseq from 24 healthy controls and 62 prospectively enrolled patients with COVID-19. We then compared these data to non-COVID-19 viral infections, curated from 23 independent studies profiling 1,855 blood samples covering six viruses (influenza, respiratory syncytial virus (RSV), human rhinovirus (HRV), severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), Ebola, dengue). We show gene expression changes in COVID-19 versus non-COVID-19 viral infections are highly correlated (r = 0.74, p < 0.001). However, we also found 416 genes specific to COVID-19. Inspection of top genes revealed dynamic immune evasion and counter host responses specific to COVID-19. Statistical deconvolution of cell proportions maps many cell type proportions concordantly shifting. Discordantly increased in COVID-19 were CD56bright natural killer cells and M2 macrophages. The concordant and discordant responses mapped out here provide a window to explore the pathophysiology of the host response to SARS-CoV-2.

8.
BMC Infect Dis ; 20(1): 860, 2020 Nov 19.
Article in English | MEDLINE | ID: covidwho-934260

ABSTRACT

BACKGROUND: The accuracy of a new optical biosensor (OB) point-of-care device for the detection of severe infections is studied. METHODS: The OB emits different wavelengths and outputs information associated with heart rate, pulse oximetry, levels of nitric oxide and kidney function. At the first phase, recordings were done every two hours for three consecutive days after hospital admission in 142 patients at high-risk for sepsis by placing the OB on the forefinger. At the second phase, single recordings were done in 54 patients with symptoms of viral infection; 38 were diagnosed with COVID-19. RESULTS: At the first phase, the cutoff value of positive likelihood of 18 provided 100% specificity and 100% positive predictive value for the diagnosis of sepsis. These were 87.5 and 91.7% respectively at the second phase. OB diagnosed severe COVID-19 with 83.3% sensitivity and 87.5% negative predictive value. CONCLUSIONS: The studied OB seems valuable for the discrimination of infection severity.


Subject(s)
Biosensing Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Sepsis/diagnosis , Aged , Aged, 80 and over , Algorithms , Area Under Curve , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/pathology , Coronavirus Infections/virology , Early Diagnosis , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , ROC Curve , SARS-CoV-2 , Sensitivity and Specificity , Severity of Illness Index
9.
Cell ; 183(2): 315-323.e9, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-738067

ABSTRACT

BCG vaccination in children protects against heterologous infections and improves survival independently of tuberculosis prevention. The phase III ACTIVATE trial assessed whether BCG has similar effects in the elderly. In this double-blind, randomized trial, elderly patients (n = 198) received BCG or placebo vaccine at hospital discharge and were followed for 12 months for new infections. At interim analysis, BCG vaccination significantly increased the time to first infection (median 16 weeks compared to 11 weeks after placebo). The incidence of new infections was 42.3% (95% CIs 31.9%-53.4%) after placebo vaccination and 25.0% (95% CIs 16.4%-36.1%) after BCG vaccination; most of the protection was against respiratory tract infections of probable viral origin (hazard ratio 0.21, p = 0.013). No difference in the frequency of adverse effects was found. Data show that BCG vaccination is safe and can protect the elderly against infections. Larger studies are needed to assess protection against respiratory infections, including COVID-19 (ClinicalTrials.gov NCT03296423).


Subject(s)
BCG Vaccine/adverse effects , BCG Vaccine/immunology , Respiratory Tract Infections/prevention & control , Aged , Aged, 80 and over , BCG Vaccine/administration & dosage , Double-Blind Method , Female , Hospitalization , Humans , Male , Middle Aged , Respiratory Tract Infections/immunology , Virus Diseases/immunology , Virus Diseases/prevention & control
10.
Cell Host Microbe ; 27(6): 992-1000.e3, 2020 06 10.
Article in English | MEDLINE | ID: covidwho-735030

ABSTRACT

Proper management of COVID-19 mandates better understanding of disease pathogenesis. The sudden clinical deterioration 7-8 days after initial symptom onset suggests that severe respiratory failure (SRF) in COVID-19 is driven by a unique pattern of immune dysfunction. We studied immune responses of 54 COVID-19 patients, 28 of whom had SRF. All patients with SRF displayed either macrophage activation syndrome (MAS) or very low human leukocyte antigen D related (HLA-DR) expression accompanied by profound depletion of CD4 lymphocytes, CD19 lymphocytes, and natural killer (NK) cells. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production by circulating monocytes was sustained, a pattern distinct from bacterial sepsis or influenza. SARS-CoV-2 patient plasma inhibited HLA-DR expression, and this was partially restored by the IL-6 blocker Tocilizumab; off-label Tocilizumab treatment of patients was accompanied by increase in circulating lymphocytes. Thus, the unique pattern of immune dysregulation in severe COVID-19 is characterized by IL-6-mediated low HLA-DR expression and lymphopenia, associated with sustained cytokine production and hyper-inflammation.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Respiratory Insufficiency/immunology , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19 , Female , HLA-DR Antigens/immunology , Humans , Inflammation/pathology , Interleukin-6/immunology , Killer Cells, Natural/pathology , Lymphopenia/pathology , Macrophage Activation , Male , Monocytes/pathology , Pandemics
11.
Cell Press ; 2020.
Article | WHO COVID | ID: covidwho-47314

ABSTRACT

Proper management of COVID-19 mandates better understanding of disease pathogenesis. The sudden clinical deterioration 7-8 days after initial symptom onset suggests that severe respiratory failure (SRF) in COVID-19 is driven by a unique pattern of immune dysfunction. We studied immune responses of 54 COVID-19 patients, 28 of whom had SRF. All SRF patients displayed either macrophage activation syndrome (MAS) or very low human leukocyte antigen (HLA)-DR expression accompanied by profound depletion of CD4-lymphocytes, CD19- lymphocytes and natural killer cells. TNFα and IL-6 production by circulating monocytes was sustained, a pattern distinct from bacterial sepsis or influenza. SARS-CoV-2 patient plasma inhibited HLA-DR expression, and this was partially restored by the IL-6 blocker Tocilizumab;off-label Tocilizumab treatment of patients was accompanied by increase in circulating lymphocytes. Thus, the unique pattern of immune dysregulation in severe COVID-19 is characterized by IL-6-mediated low HLA-DR expression and lymphopenia, associated with sustained cytokine production and hyper-inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...