ABSTRACT
Neurological manifestations are common in COVID-19, the disease caused by SARS-CoV-2. Despite reports of SARS-CoV-2 detection in the brain and cerebrospinal fluid of COVID-19 patients, it is still unclear whether the virus can infect the central nervous system, and which neuropathological alterations can be ascribed to viral tropism, rather than immune-mediated mechanisms. Here, we assess neuropathological alterations in 24 COVID-19 patients and 18 matched controls who died due to pneumonia/respiratory failure. Aside from a wide spectrum of neuropathological alterations, SARS-CoV-2-immunoreactive neurons were detected in the dorsal medulla and in the substantia nigra of five COVID-19 subjects. Viral RNA was also detected by real-time RT-PCR. Quantification of reactive microglia revealed an anatomically segregated pattern of inflammation within affected brainstem regions, and was higher when compared to controls. While the results of this study support the neuroinvasive potential of SARS-CoV-2 and characterize the role of brainstem inflammation in COVID-19, its potential implications for neurodegeneration, especially in Parkinson's disease, require further investigations.
ABSTRACT
The Coronavirus Disease 2019 (Covid-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has led to unprecedented challenges for the delivery of healthcare and has had a clear impact on people with chronic neurological conditions such as Parkinson's disease (PD). Acute worsening of motor and non-motor symptoms and long-term sequalae have been described during and after SARS-CoV-2 infections in people with Parkinson's (PwP), which are likely to be multifactorial in their origin. On the one hand, it is likely that worsening of symptoms has been related to the viral infection itself, whereas social restrictions imposed over the course of the Covid-19 pandemic might also have had such an effect. Twenty cases of post-Covid-19 para-infectious or post-infectious parkinsonism have been described so far where a variety of pathophysiological mechanisms seem to be involved; however, a Covid-19-induced wave of post-viral parkinsonism seems rather unlikely at the moment. Here, we describe the interaction between SARS-CoV-2 and PD in the short- and long-term and summarize the clinical features of post-Covid-19 cases of parkinsonism observed so far.
Subject(s)
COVID-19 , Parkinson Disease , Parkinsonian Disorders , COVID-19/complications , Humans , Pandemics , Parkinson Disease/complications , SARS-CoV-2 , Post-Acute COVID-19 SyndromeABSTRACT
The Coronavirus Disease 2019 (Covid-19) pandemic has profoundly affected the quality of life (QoL) and health of the general population globally over the past 2 years, with a clear impact on people with Parkinson's Disease (PwP, PD). Non-motor symptoms have been widely acknowledged to hold a vital part in the clinical spectrum of PD, and, although often underrecognized, they significantly contribute to patients' and their caregivers' QoL. Up to now, there have been numerous reports of newly emerging or acutely deteriorating non-motor symptoms in PwP who had been infected by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), while some of these symptoms, like fatigue, pain, depression, anxiety and cognitive impairment, have also been identified as part of the long-COVID syndrome due to their persistent nature. The subjacent mechanisms, mediating the appearance or progression of non-motor symptoms in the context of Covid-19, although probably multifactorial in origin, remain largely unknown. Such mechanisms might be, at least partly, related solely to the viral infection per se or the lifestyle changes imposed during the pandemic, as many of the non-motor symptoms seem to be prevalent even among Covid-19 patients without PD. Here, we summarize the available evidence and implications of Covid-19 in non-motor PD symptoms in the acute and chronic, if applicable, phase of the infection, with a special reference on studies of PwP.
Subject(s)
COVID-19 , COVID-19/complications , Humans , Pandemics , Quality of Life/psychology , SARS-CoV-2 , Post-Acute COVID-19 SyndromeABSTRACT
INTRODUCTION: Levodopa/carbidopa intestinal gel (LCIG) is an effective treatment in patients with advanced Parkinson's disease (PD) with consolidated evidence of clinical efficacy. However, only few studies have assessed long-term safety, causes of discontinuation, mortality, and relative predictors. METHODS: We conducted a retrospective analysis of 79 PD patients treated with LCIG between 2005 and 2020 in two Italian Neurological Centers, recording all adverse events (AEs), including weight loss (WL). Kaplan-Meier curve was used to estimate the time to discontinuation and survival. Cox proportional hazard model was employed to identify predictors of discontinuation and mortality, while Pearson's correlation was used to analyze predictors of WL. RESULTS: The average follow-up was 47.7 ± 40.5 months and the median survival from disease onset was 25 years. There were three cases of polyradiculoneuropathy Guillain-Barre syndrome-like, all occurred in the early years of LCIG treatment. Twenty-five patients died (32%), 18 on LCIG (including one suicide) and seven after discontinuation. The mean WL was 3.62 ± 7.5 kg, which correlated with levodopa dose at baseline (p = 0.002), levodopa equivalent daily dose (LEDD) baseline (p = 0.017) and off-duration (p = 0.0014), but not dyskinesia. Peristomal complications emerged as a negative predictor of discontinuation (p = 0.008). CONCLUSIONS: LCIG has a relatively satisfactory long-term safety profile and efficacy and a relatively low rate of discontinuation. Peristomal complications may represent a predictor of longer duration of therapy. According to the mortality analysis, LCIG patients show a long lifespan. Delaying the initiation of LCIG does not affect the sustainability of LCIG therapy.
Subject(s)
Carbidopa , Parkinson Disease , Antiparkinson Agents/adverse effects , Drug Combinations , Gels/therapeutic use , Humans , Levodopa/therapeutic use , Parkinson Disease/drug therapy , Retrospective Studies , Weight LossABSTRACT
During the first wave of infections, neurological symptoms in Coronavirus Disease 2019 (COVID-19) patients raised particular concern, suggesting that, in a subset of patients, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could invade and damage cells of the central nervous system (CNS). Indeed, up to date several in vitro and in vivo studies have shown the ability of SARS-CoV-2 to reach the CNS. Both viral and/or host related features could explain why this occurs only in certain individuals and not in all the infected population. The aim of the present study was to evaluate if onset of neurological manifestations in COVID-19 patients was related to specific viral genomic signatures. To this end, viral genome was extracted directly from nasopharyngeal swabs of selected SARS-CoV-2 positive patients presenting a spectrum of neurological symptoms related to COVID-19, ranging from anosmia/ageusia to more severe symptoms. By adopting a whole genome sequences approach, here we describe a panel of known as well as unknown mutations detected in the analyzed SARS-CoV-2 genomes. While some of the found mutations were already associated with an improved viral fitness, no common signatures were detected when comparing viral sequences belonging to specific groups of patients. In conclusion, our data support the notion that COVID-19 neurological manifestations are mainly linked to patient-specific features more than to virus genomic peculiarities.
Subject(s)
Ageusia , COVID-19 , Central Nervous System , Genomics , Humans , SARS-CoV-2/geneticsABSTRACT
This Viewpoint discusses insights from basic science and clinical perspectives on coronavirus disease 2019 (COVID-19)/severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in the brain, with a particular focus on Parkinson's disease. Major points include that neuropathology studies have not answered the central issue of whether the virus enters central nervous system neurons, astrocytes or microglia, and the brain vascular cell types that express virus have not yet been identified. Currently, there is no clear evidence for human neuronal or astrocyte expression of angiotensin-converting enzyme 2 (ACE2), the major receptor for viral entry, but ACE2 expression may be activated by inflammation, and a comparison of healthy and infected brains is important. In contrast to the 1918 influenza pandemic and avian flu, reports of encephalopathy in COVID-19 have been slow to emerge, and there are so far no documented reports of parkinsonism apart from a single case report. We recommend consensus guidelines for the clinical treatment of Parkinson's patients with COVID-19. While a role for the virus in causing or exacerbating Parkinson's disease appears unlikely at this time, aggravation of specific motor and non-motor symptoms has been reported, and it will be important to monitor subjects after recovery, particularly for those with persisting hyposmia.