Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.07.495142

ABSTRACT

Accurate inference of who infected whom in an infectious disease outbreak is critical for the delivery of effective infection prevention and control. The increased resolution of pathogen whole-genome sequencing has significantly improved our ability to infer transmission events. Despite this, transmission inference often remains limited by the lack of genomic variation between the source case and infected contacts. Although within-host genetic diversity is common among a wide variety of pathogens, conventional whole-genome sequencing phylogenetic approaches to reconstruct outbreaks exclusively use consensus sequences, which consider only the most prevalent nucleotide at each position and therefore fail to capture low frequency variation within samples. We hypothesized that including within-sample variation in a phylogenetic model would help to identify who infected whom in instances in which this was previously impossible. Using whole-genome sequences from SARS-CoV-2 multi-institutional outbreaks as an example, we show how within-sample diversity is stable among repeated serial samples from the same host, is transmitted between those cases with known epidemiological links, and how this improves phylogenetic inference and our understanding of who infected whom. Our technique is applicable to other infectious diseases and has immediate clinical utility in infection prevention and control.


Subject(s)
Communicable Diseases
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1286644.v1

ABSTRACT

Background: Serological testing is used to quantify SARS-CoV-2 seroprevalence, guide booster vaccination and select patients for anti-SARS-CoV-2 antibodies therapy. However, our understanding of how serological tests perform as time passes after infection is limited.Methods: Four assays were compared in parallel: 1) the multiplexed spike, nucleoprotein and receptor binding domain Meso Scale Discovery (MSD) assay 2) the Roche Elecsys-Nucleoprotein assay (Roche-N) 3) the Roche Spike assay (Roche-S) and 4) the Abbott Nucleoprotein assay (Abbott-N) on serial positive monthly samples from hospital staff up to 200 days following infection as part of the Co-Stars study.Results: We demonstrate that 50% of the Abbott-N assays give a negative result after 175 days (median survival time 95% CI 168-185 days) while the Roche-N assay (93% survival probability at 200 days, 95% CI 88-97%) maintained seropositivity. The MSD spike (97% survival probability at 200 days, 95% CI 95-99%) and the Roche-S assay (95% survival probability at 200 days, 95% CI 93-97%) also remained seropositive. The best performing quantitative Roche-S assay showed no evidence of waning Spike antibody titres over 200-days.Conclusions: The Abbott-N assay fails to detect SARS-CoV-2 antibodies as time passes since infection. In contrast the Roche and the MSD assays maintained high sensitivity. The limitations of the Abbott assay must be considered in clinical decision making. The long duration of detectable neutralizing spike antibody titres by the quantitative Roche-S assay provides further evidence in support of long-lasting SARS-CoV-2 protection to pre-existing strains of SARS-CoV-2 following natural infection.Trial registration: Co-STARs study was registered with ClinicalTrials.gov on May 8th, 2020, with trial number NCT04380896 (www.clinicaltrials.gov, NCT04380896)

3.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3739808

ABSTRACT

Background: Antibodies to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) have been shown to neutralize the virus in-vitro and prevent disease in animal challenge models upon re-exposure. However, current understanding of SARS-CoV-2 humoral dynamics and longevity is conflicting.Methods: The Co-Stars study prospectively enrolled 3679 healthcare workers to comprehensively characterize the kinetics of SARS-CoV-2 spike (S), receptor-binding-domain (RBD) and nucleoprotein (N) antibodies in parallel. Participants screening seropositive had serial monthly serological testing for maximum 7 months with the Mesoscale Discovery Assay. Survival analysis determined the proportion of sero-reversion while two hierarchical Gamma models predicted the upper- and lower-bounds of long-term antibody trajectory.Results: A total of 1163 monthly samples were provided from 349 seropositive participants. At 200 days post-symptoms, 99% of participants had detectable S-antibodies compared to 75% with detectable N-antibodies. S-antibody was predicted to remain detectable in 95% of participants until 465 days [95%CI 370-575] using a ‘continuous-decay’ model and indefinitely using a ‘decay-to-plateau’ model to account for antibody secretion by long-lived plasma cells. S-antibody titers correlated strongly with surrogate neutralization in-vitro (R2=0.72). N-antibodies, however, decayed rapidly with a half-life of 60 days [95%CI 52-68].Conclusions: The Co-STAR's study data presented here provides evidence for long-term persistence of neutralizing S-antibodies. This has important implications for the duration of functional immunity following SARS-CoV-2 infection. In contrast, the rapid decay of N-antibodies must be considered in future seroprevalence studies and public health decision-making. This is the first study to establish a mathematical framework capable of predicting long-term humoral dynamics following SARS-CoV-2 infection.Trial Registration: NCT04380896.Funding Statement: GOSH charity, Wellcome Trust (201470/Z/16/Z and 220565/Z/20/Z). GOSH NIHR Funded Biomedical Research Centre.Declaration of Interests: The authors have declared that no competing interests exist.Ethics Approval Statement: This study was approved by the UK Health Research Authority (www.hra.nhs.uk). Written informed consent was obtained from all participants before recruitment to the study.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.20.20235697

ABSTRACT

Background: Antibodies to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) have been shown to neutralize the virus in-vitro. Similarly, animal challenge models suggest that neutralizing antibodies isolated from SARS-CoV-2 infected individuals prevent against disease upon re-exposure to the virus. Understanding the nature and duration of the antibody response following SARS-CoV-2 infection is therefore critically important. Methods: Between April and October 2020 we undertook a prospective cohort study of 3555 healthcare workers in order to elucidate the duration and dynamics of antibody responses following infection with SARS-CoV-2. After a formal performance evaluation against 169 PCR confirmed cases and negative controls, the Meso-Scale Discovery assay was used to quantify in parallel, antibody titers to the SARS-CoV-2 nucleoprotein (N), spike (S) protein and the receptor-binding-domain (RBD) of the S-protein. All seropositive participants were followed up monthly for a maximum of 7 months; those participants that were symptomatic, with known dates of symptom-onset, seropositive by the MSD assay and who provided 2 or more monthly samples were included in the analysis. Survival analysis was used to determine the proportion of sero-reversion (switching from positive to negative) from the raw data. In order to predict long-term antibody dynamics, two hierarchical longitudinal Gamma models were implemented to provide predictions for the lower bound (continuous antibody decay to zero, 'Gamma-decay') and upper bound (decay-to-plateau due to long lived plasma cells, 'Gamma-plateau') long-term antibody titers. Results: A total of 1163 samples were provided from 349 of 3555 recruited participants who were symptomatic, seropositive by the MSD assay, and were followed up with 2 or more monthly samples. At 200 days post symptom onset, 99% of participants had detectable S-antibody whereas only 75% of participants had detectable N-antibody. Even under our most pessimistic assumption of persistent negative exponential decay, the S-antibody was predicted to remain detectable in 95% of participants until 465 days [95% CI 370-575] after symptom onset. Under the Gamma-plateau model, the entire posterior distribution of S-antibody titers at plateau remained above the threshold for detection indefinitely. Surrogate neutralization assays demonstrated a strong positive correlation between antibody titers to the S-protein and blocking of the ACE-2 receptor in-vitro [R2=0.72, p<0.001]. By contrast, the N-antibody waned rapidly with a half-life of 60 days [95% CI 52-68]. Discussion: This study has demonstrated persistence of the spike antibody in 99% of participants at 200 days following SARS-CoV-2 symptoms and rapid decay of the nucleoprotein antibody. Diagnostic tests or studies that rely on the N-antibody as a measure of seroprevalence must be interpreted with caution. Our lowest bound prediction for duration of the spike antibody was 465 days and our upper bound predicted spike antibody to remain indefinitely in line with the long-term seropositivity reported for SARS-CoV infection. The long-term persistence of the S-antibody, together with the strong positive correlation between the S-antibody and viral surrogate neutralization in-vitro, has important implications for the duration of functional immunity following SARS-CoV-2 infection.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
5.
Infect Genet Evol ; 83: 104351, 2020 09.
Article in English | MEDLINE | ID: covidwho-175956

ABSTRACT

SARS-CoV-2 is a SARS-like coronavirus of likely zoonotic origin first identified in December 2019 in Wuhan, the capital of China's Hubei province. The virus has since spread globally, resulting in the currently ongoing COVID-19 pandemic. The first whole genome sequence was published on January 5 2020, and thousands of genomes have been sequenced since this date. This resource allows unprecedented insights into the past demography of SARS-CoV-2 but also monitoring of how the virus is adapting to its novel human host, providing information to direct drug and vaccine design. We curated a dataset of 7666 public genome assemblies and analysed the emergence of genomic diversity over time. Our results are in line with previous estimates and point to all sequences sharing a common ancestor towards the end of 2019, supporting this as the period when SARS-CoV-2 jumped into its human host. Due to extensive transmission, the genetic diversity of the virus in several countries recapitulates a large fraction of its worldwide genetic diversity. We identify regions of the SARS-CoV-2 genome that have remained largely invariant to date, and others that have already accumulated diversity. By focusing on mutations which have emerged independently multiple times (homoplasies), we identify 198 filtered recurrent mutations in the SARS-CoV-2 genome. Nearly 80% of the recurrent mutations produced non-synonymous changes at the protein level, suggesting possible ongoing adaptation of SARS-CoV-2. Three sites in Orf1ab in the regions encoding Nsp6, Nsp11, Nsp13, and one in the Spike protein are characterised by a particularly large number of recurrent mutations (>15 events) which may signpost convergent evolution and are of particular interest in the context of adaptation of SARS-CoV-2 to the human host. We additionally provide an interactive user-friendly web-application to query the alignment of the 7666 SARS-CoV-2 genomes.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Genetic Variation , Genome, Viral , Pneumonia, Viral/virology , Adaptation, Physiological/genetics , Antiviral Agents , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Humans , Likelihood Functions , Mutation , Pandemics , Phylogeny , SARS-CoV-2 , Viral Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL