Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Wellcome open research ; 6:279, 2021.
Article in English | EuropePMC | ID: covidwho-1732489

ABSTRACT

Background: Industrialised countries had varied responses to the coronavirus disease 2019 (COVID-19) pandemic, and how they adapted to new situations and knowledge since it began. These differences in preparedness and policy may lead to different death tolls from COVID-19 as well as other diseases. Methods: We applied an ensemble of 16 Bayesian probabilistic models to vital statistics data to estimate the impacts of the pandemic on weekly all-cause mortality for 40 industrialised countries from mid-February 2020 through mid-February 2021, before a large segment of the population was vaccinated in these countries. Results: Over the entire year, an estimated 1,410,300 (95% credible interval 1,267,600-1,579,200) more people died in these countries than would have been expected had the pandemic not happened. This is equivalent to 141 (127-158) additional deaths per 100,000 people and a 15% (14-17) increase in deaths in all these countries combined. In Iceland, Australia and New Zealand, mortality was lower than would be expected if the pandemic had not occurred, while South Korea and Norway experienced no detectable change in mortality. In contrast, the USA, Czechia, Slovakia and Poland experienced at least 20% higher mortality. There was substantial heterogeneity across countries in the dynamics of excess mortality. The first wave of the pandemic, from mid-February to the end of May 2020, accounted for over half of excess deaths in Scotland, Spain, England and Wales, Canada, Sweden, Belgium, the Netherlands and Cyprus. At the other extreme, the period between mid-September 2020 and mid-February 2021 accounted for over 90% of excess deaths in Bulgaria, Croatia, Czechia, Hungary, Latvia, Montenegro, Poland, Slovakia and Slovenia. Conclusions: Until the great majority of national and global populations have vaccine-acquired immunity, minimising the death toll of the pandemic from COVID-19 and other diseases will require actions to delay and contain infections and continue routine health care.

2.
Wellcome Open Res ; 6: 279, 2021.
Article in English | MEDLINE | ID: covidwho-1732490

ABSTRACT

Background: Industrialised countries had varied responses to the coronavirus disease 2019 (COVID-19) pandemic, and how they adapted to new situations and knowledge since it began. These differences in preparedness and policy may lead to different death tolls from COVID-19 as well as other diseases. Methods: We applied an ensemble of 16 Bayesian probabilistic models to vital statistics data to estimate the impacts of the pandemic on weekly all-cause mortality for 40 industrialised countries from mid-February 2020 through mid-February 2021, before a large segment of the population was vaccinated in these countries. Results: Over the entire year, an estimated 1,410,300 (95% credible interval 1,267,600-1,579,200) more people died in these countries than would have been expected had the pandemic not happened. This is equivalent to 141 (127-158) additional deaths per 100,000 people and a 15% (14-17) increase in deaths in all these countries combined. In Iceland, Australia and New Zealand, mortality was lower than would be expected if the pandemic had not occurred, while South Korea and Norway experienced no detectable change in mortality. In contrast, the USA, Czechia, Slovakia and Poland experienced at least 20% higher mortality. There was substantial heterogeneity across countries in the dynamics of excess mortality. The first wave of the pandemic, from mid-February to the end of May 2020, accounted for over half of excess deaths in Scotland, Spain, England and Wales, Canada, Sweden, Belgium, the Netherlands and Cyprus. At the other extreme, the period between mid-September 2020 and mid-February 2021 accounted for over 90% of excess deaths in Bulgaria, Croatia, Czechia, Hungary, Latvia, Montenegro, Poland, Slovakia and Slovenia. Conclusions: Until the great majority of national and global populations have vaccine-acquired immunity, minimising the death toll of the pandemic from COVID-19 and other diseases will require actions to delay and contain infections and continue routine health care.

3.
Wellcome open research ; 6, 2021.
Article in English | EuropePMC | ID: covidwho-1728267

ABSTRACT

Background: Industrialised countries had varied responses to the COVID-19 pandemic, which may lead to different death tolls from COVID-19 and other diseases. Methods: We applied an ensemble of 16 Bayesian probabilistic models to vital statistics data to estimate the number of weekly deaths if the pandemic had not occurred for 40 industrialised countries and US states from mid-February 2020 through mid-February 2021. We subtracted these estimates from the actual number of deaths to calculate the impacts of the pandemic on all-cause mortality. Results: Over this year, there were 1,410,300 (95% credible interval 1,267,600-1,579,200) excess deaths in these countries, equivalent to a 15% (14-17) increase, and 141 (127-158) additional deaths per 100,000 people. In Iceland, Australia and New Zealand, mortality was lower than would be expected in the absence of the pandemic, while South Korea and Norway experienced no detectable change. The USA, Czechia, Slovakia and Poland experienced >20% higher mortality. Within the USA, Hawaii experienced no detectable change in mortality and Maine a 5% increase, contrasting with New Jersey, Arizona, Mississippi, Texas, California, Louisiana and New York which experienced >25% higher mortality. Mid-February to the end of May 2020 accounted for over half of excess deaths in Scotland, Spain, England and Wales, Canada, Sweden, Belgium, the Netherlands and Cyprus, whereas mid-September 2020 to mid-February 2021 accounted for >90% of excess deaths in Bulgaria, Croatia, Czechia, Hungary, Latvia, Montenegro, Poland, Slovakia and Slovenia. In USA, excess deaths in the northeast were driven mainly by the first wave, in southern and southwestern states by the summer wave, and in the northern plains by the post-September period. Conclusions: Prior to widespread vaccine-acquired immunity, minimising the overall death toll of the pandemic requires policies and non-pharmaceutical interventions that delay and reduce infections, effective treatments for infected patients, and mechanisms to continue routine health care.

4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-291717

ABSTRACT

Background: Industrialised countries had varied responses to the coronavirus disease 2019 (COVID-19) pandemic, and how they adapted to new situations and knowledge since it began. These differences in preparedness and policy may lead to different death tolls from COVID-19 as well as other diseases. Methods: We applied an ensemble of 16 Bayesian probabilistic models to vital statistics data to estimate the impacts of the pandemic on weekly all-cause mortality for 40 industrialised countries from mid-February 2020 through mid-February 2021, before a large segment of the population was vaccinated in these countries. Results: Over the entire year, an estimated 1,410,300 (95% credible interval 1,267,600-1,579,200) more people died in these countries than would have been expected had the pandemic not happened. This is equivalent to 141 (127-158) additional deaths per 100,000 people and a 15% (14-17) increase in deaths in all these countries combined. In Iceland, Australia and New Zealand, mortality was lower than would be expected if the pandemic had not occurred, while South Korea and Norway experienced no detectable change in mortality. In contrast, the USA, Czechia, Slovakia and Poland experienced at least 20% higher mortality. There was substantial heterogeneity across countries in the dynamics of excess mortality. The first wave of the pandemic, from mid-February to the end of May 2020, accounted for over half of excess deaths in Scotland, Spain, England and Wales, Canada, Sweden, Belgium, the Netherlands and Cyprus. At the other extreme, the period between mid-September 2020 and mid-February 2021 accounted for over 90% of excess deaths in Bulgaria, Croatia, Czechia, Hungary, Latvia, Montenegro, Poland, Slovakia and Slovenia. Conclusions: Until the great majority of national and global populations have vaccine-acquired immunity, minimising the death toll of the pandemic from COVID-19 and other diseases will require actions to delay and contain infections and continue routine health care.

5.
Cardiol Res Pract ; 2021: 5565200, 2021.
Article in English | MEDLINE | ID: covidwho-1346102

ABSTRACT

BACKGROUND: Infective endocarditis (IE) is challenging to manage in the COVID-19 lockdown period, in part given its reliance on echocardiography for diagnosis and management and the associated virus transmission risks to patients and healthcare workers. This study assesses utilisation of the endocarditis team (ET) in limiting routine echocardiography, especially transoesophageal echocardiography (TOE), in patients with suspected IE, and explores the effect on clinical outcomes. METHODS: All patients discussed at the ET meeting at Imperial College Healthcare NHS Trust during the first lockdown in the UK (23 March to 8 July 2020) were prospectively included and analysed in this observational study. RESULTS: In total, 38 patients were referred for ET review (71% male, median age 54 [interquartile range 48, 65.5] years). At the time of ET discussion, 21% had no echo imaging, 16% had point-of-care ultrasound only, and 63% had formal TTE. In total, only 16% underwent TOE. The ability of echocardiography, in those where it was performed, to affect IE diagnosis according to the Modified Duke Criteria was significant (p=0.0099); however, sensitivity was not affected. All-cause mortality was 17% at 30 days and 25% at 12 months from ET discussion in those with confirmed IE. CONCLUSION: Limiting echocardiography in patients with a low pretest probability (not probable or definite IE according to the Modified Duke Criteria) did not affect the diagnostic ability of the Modified Duke Criteria to rule out IE in this small study. Moreover, restricting nonessential echocardiography, and importantly TOE, in patients with suspected IE through use of the ET did not impact all-cause mortality.

6.
Open Heart ; 8(1)2021 03.
Article in English | MEDLINE | ID: covidwho-1136107

ABSTRACT

OBJECTIVES: The clinical impact of SARS-CoV-2 has varied across countries with varying cardiovascular manifestations. We review the cardiac presentations, in-hospital outcomes and development of cardiovascular complications in the initial cohort of SARS-CoV-2 positive patients at Imperial College Healthcare National Health Service Trust, UK. METHODS: We retrospectively analysed 498 COVID-19 positive adult admissions to our institute from 7 March to 7 April 2020. Patient data were collected for baseline demographics, comorbidities and in-hospital outcomes, especially relating to cardiovascular intervention. RESULTS: Mean age was 67.4±16.1 years and 62.2% (n=310) were male. 64.1% (n=319) of our cohort had underlying cardiovascular disease (CVD) with 53.4% (n=266) having hypertension. 43.2%(n=215) developed acute myocardial injury. Mortality was significantly increased in those patients with myocardial injury (47.4% vs 18.4%, p<0.001). Only four COVID-19 patients had invasive coronary angiography, two underwent percutaneous coronary intervention and one required a permanent pacemaker implantation. 7.0% (n=35) of patients had an inpatient echocardiogram. Acute myocardial injury (OR 2.39, 95% CI 1.31 to 4.40, p=0.005) and history of hypertension (OR 1.88, 95% CI 1.01 to 3.55, p=0.049) approximately doubled the odds of in-hospital mortality in patients admitted with COVID-19 after other variables had been controlled for. CONCLUSION: Hypertension, pre-existing CVD and acute myocardial injury were associated with increased in-hospital mortality in our cohort of COVID-19 patients. However, only a low number of patients required invasive cardiac intervention.


Subject(s)
COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , Pandemics , Aged , Comorbidity , Female , Hospital Mortality/trends , Humans , Incidence , London , Male , RNA, Viral/analysis , Retrospective Studies , SARS-CoV-2/genetics , Survival Rate/trends
8.
Perfusion ; 36(6): 547-558, 2021 09.
Article in English | MEDLINE | ID: covidwho-1067045

ABSTRACT

The COVID-19 pandemic has altered our approach to inpatient echocardiography delivery. There is now a greater focus to address key clinical questions likely to make an immediate impact in management, particularly during the period of widespread infection. Handheld echocardiography (HHE) can be used as a first-line assessment tool, limiting scanning time and exposure to high viral load. This article describes a potential role for HHE during a pandemic. We propose a protocol with a reporting template for a focused core dataset necessary in delivering an acute echocardiography service in the setting of a highly contagious disease, minimising risk to the operator. We cover the scenarios typically encountered in the acute cardiology setting and how an expert trained echocardiography team can identify such pathologies using a limited imaging format and include cardiac presentations encountered in those patients acutely unwell with COVID-19.


Subject(s)
COVID-19 , Cardiology , Echocardiography , Humans , Pandemics , SARS-CoV-2
9.
Nat Med ; 26(12): 1919-1928, 2020 12.
Article in English | MEDLINE | ID: covidwho-872715

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has changed many social, economic, environmental and healthcare determinants of health. We applied an ensemble of 16 Bayesian models to vital statistics data to estimate the all-cause mortality effect of the pandemic for 21 industrialized countries. From mid-February through May 2020, 206,000 (95% credible interval, 178,100-231,000) more people died in these countries than would have had the pandemic not occurred. The number of excess deaths, excess deaths per 100,000 people and relative increase in deaths were similar between men and women in most countries. England and Wales and Spain experienced the largest effect: ~100 excess deaths per 100,000 people, equivalent to a 37% (30-44%) relative increase in England and Wales and 38% (31-45%) in Spain. Bulgaria, New Zealand, Slovakia, Australia, Czechia, Hungary, Poland, Norway, Denmark and Finland experienced mortality changes that ranged from possible small declines to increases of 5% or less in either sex. The heterogeneous mortality effects of the COVID-19 pandemic reflect differences in how well countries have managed the pandemic and the resilience and preparedness of the health and social care system.


Subject(s)
COVID-19/mortality , Demography , Developed Countries/statistics & numerical data , Mortality , Pandemics , Population Dynamics , COVID-19/epidemiology , Cause of Death/trends , Female , Geography , Humans , Industrial Development/statistics & numerical data , Male , Mortality/trends , Population Density , Population Dynamics/statistics & numerical data , Population Dynamics/trends , Public Policy , SARS-CoV-2/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL