Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Hydrogen Energy ; 2021 Nov 09.
Article in English | MEDLINE | ID: covidwho-1509861

ABSTRACT

Usage of plastics in the form of personal protective equipment, medical devices, and common packages has increased alarmingly during these pandemic times. Though they have served as an excellent protection source in minimizing the coronavirus disease (COVID-19) spreading, they have still emerged as major environmental pollutants nowadays. These non-degradable COVID-19 plastic wastes (CPW) were treated through incineration and landfilling process, which may lead to either the release of harmful gases or contaminating the surrounding environment. Further, they can cause numerous health hazards to the human and animal populations. These plastic wastes can be efficiently managed through thermochemical processes like pyrolysis or gasification, which assist in degrading the plastic waste and also effectively convert them into useful energy-yielding products. The pyrolysis process promotes the formation of liquid fuels and chemicals, whereas gasification leads to syngas and hydrogen fuel production. These energy-yielding products can help to compensate for the fossil fuels depletion in the near future. There are many insights explained in terms of the types of reactors and influential factors that can be adopted for the pyrolysis and gasification process, to produce high efficient energy products from the wastes. In addition, advanced technologies including co-gasification and two-stage gasification were also reviewed.

3.
J Hazard Mater ; 423(Pt B): 127215, 2022 02 05.
Article in English | MEDLINE | ID: covidwho-1415557

ABSTRACT

The increasing awareness of waste circular economy has motivated valorization strategies for minimizing resource consumption and waste production in the private sector. With the rise of various industrial wastes and with the emergence of COVID-19 wastes, a sustainable approach is needed to mitigate the growing concern about wastes. Thermochemical treatment technologies in the form of direct combustion, torrefaction, pyrolysis, and gasification have been identified to have vital roles in the value-creation of various waste streams. Moreover, the alignment of thermochemical processes for waste mitigation concerning the circular economy framework needs to be established. Accordingly, a comprehensive review of the different thermochemical treatment options for industrial and the novel COVID-19 medical wastes streams is conducted in this study. This review focuses on highlighting the instrumental role of thermochemical conversion platforms in achieving a circular economy in the industrial sector. Various strategies in waste mitigation through various thermochemical processes such as management, recovery, reduction, and treatment are discussed. The results show that thermochemical technologies are beneficial in addressing the sustainability concerns on mitigating wastes from the industrial sector and wastes brought by the COVID-19 pandemic. This also includes the current issues faced as well as future perspectives of the thermochemical conversion technologies.


Subject(s)
COVID-19 , Waste Management , Humans , Industrial Waste , Pandemics , Pyrolysis , SARS-CoV-2
5.
Environ Technol Innov ; 20: 101151, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1343208

ABSTRACT

Coronavirus 2019 (COVID-19) has globally affected the human mortality rate and economic history of the modern world. According to the World Health Organization, COVID-19 has caused a severe threat to the health of the vulnerable groups, notably the elderly. There is still some disagreements regarding the source of the virus and its intermediate host. However, the spread of this disease has caused most countries to enforce strict curfew laws and close most industrial and recreational centres. This study aims to show the potential positive effects of COVID-19 on the environment and the increase of renewable energy generation in Malaysia. To prevent the spread of this disease, Malaysia enacted the Movement Control Order (MCO) law in March 2020. Implementation of this law led to a reduction in environmental pollution, especially air pollution, in this country. The greenhouse gases (GHG) emission , which was 8 Mt CO2 eq. from January 2020 to March 2020, reduced to <1 Mt CO2 eq. for April and May. The reduction of GHG emission and pollutant gases allowed more sunlight to reach photovoltaic panels, hence increasing the renewable energy generation.

6.
Mol Biotechnol ; 63(10): 898-908, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1279492

ABSTRACT

New pandemic infection of coronaviridae family virus spread to more than 210 countries with total infection of 1,136,851 and 62,955 (4.6%) deaths until 5th April 2020. Which stopped the regular cycle of humankind but the nature is consistently running. There is no micro molecule remedy found yet to restore the regular life of people. Hence, we decided to work on natural biophores against the COVID proteins. As a first step, major phytoconstituents of antiviral herbs like Leucas aspera, Morinda citrifolia, Azadirachta indica, Curcuma longa, Piper nigrum, Ocimum tenuiflorum, and Corallium rubrum collected and performed the lock and key analysis with major spike protein of COVID-19 to find the best fitting lead biophore using computational drug design platform. The results of protocol run showed, phytoconstituents of Morinda citrifolia and Leucas aspera were found lower binding energy range of - 55.18 to - 25.34 kcal/mol, respectively and compared with Hydroxychloroquine (HCQ) (- 24.29 kcal/mol) and Remdesivir (- 25.38 kcal/mol). The results conclude that, core skeletons chromen, anthracene 9, 11 dione and long-chain alkyl acids/ester-containing biophores showen high stable antagonistic affinity with S-protein. Which leads the breakdown of spike protein and ACE2 receptor complex formation and host mechanism of corono virus. In addition, the dynamic trajectory analysis confirmed the complete denaturation of spike protein by the molecule 4-(24-hydroxy-1-oxo-5-n-propyltetracosanyl)-phenol from Leucas aspera and stability of spike-ligand complex. These biophores will aid the researcher to fabricate new promising analogue and being recommended to assess its COVID-19 treatment.


Subject(s)
Antiviral Agents/chemistry , Phytochemicals/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/virology , Catalytic Domain , Drug Design , Humans , Molecular Docking Simulation , Molecular Structure , Plants, Medicinal/chemistry , Protein Binding/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
7.
Environ Res ; 197: 111096, 2021 06.
Article in English | MEDLINE | ID: covidwho-1163738

ABSTRACT

This study is motivated by the amplified transmission rates of the SAR-CoV-2 virus in areas with high concentrations of fine particulates (PM2.5) as reported in northern Italy and Mexico. To develop a deeper understanding of the contribution of PM2.5 in the propagation of the SAR-CoV-2 virus in the population, the deposition patterns and efficiencies (DEs) of PM2.5 laced with the virus in healthy and asthmatic airways are studied. Physiologically correct 3-D models for generations 10-12 of the human airways are applied to carry out a numerical analysis of two-phase flow for full breathing cycles. Two concentrations of PM2.5 are applied for the simulation, i.e., 30 µg⋅m-3 and 80 µg⋅m-3 for three breathing statuses, i.e., rest, light exercise, and moderate activity. All the PM2.5 injected into the control volume is assumed to be 100% contaminated with the SAR-CoV-2 virus. Skewed air-flow phenomena at the bifurcations are proportional to the Reynolds number at the inlet, and their intensity in the asthmatic airway exceeded that of the healthy one. Upon exhalation, two peak air-flow vectors from daughter branches combine to form one big vector in the parent generation. Asthmatic airway models has higher deposition efficiencies (DEs) for contaminated PM2.5 as compared to the healthy one. Higher DEs arise in the asthmatic airway model due to complex secondary flows which increase the impaction of contaminated PM2.5 on airways' walls.


Subject(s)
Asthma , Lung , Computer Simulation , Humans , Italy , Mexico , Models, Biological , Particulate Matter/toxicity
8.
Chemosphere ; 275: 130092, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1095908

ABSTRACT

COVID-19 has led to the enormous rise of medical wastes throughout the world, and these have mainly been generated from hospitals, clinics, and other healthcare establishments. This creates an additional challenge in medical waste management, particularly in developing countries. Improper managing of medical waste may have serious public health issues and a significant impact on the environment. There are currently three disinfection technologies, namely incineration, chemical and physical processes, that are available to treat COVID-19 medical waste (CMW). This study focuses on thermochemical process, particularly pyrolysis process to treat the medical waste. Pyrolysis is a process that utilizes the thermal instability of organic components in medical waste to convert them into valuable products. Besides, the technique is environmentally friendly, more efficient and cost-effective, requires less landfill capacity, and causes lower pollution. The current pandemic situation generates a large amount of plastic medical wastes, which mainly consists of polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and nylon. These plastic wastes can be converted into valuable energy products like oil, gas and char through pyrolysis process. This review provides detailed information about CMW handling, treatment, valuable product generation, and proper discharge into the open environment.


Subject(s)
COVID-19 , Medical Waste , Humans , Incineration , Pyrolysis , SARS-CoV-2
9.
Chemosphere ; 272: 129601, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1014402

ABSTRACT

Recently, the COVID-19 disease spread has emerged as a worldwide pandemic and cause severe threats to humanity. The World Health Organisation (WHO) releases guidelines to help the countries to reduce the spread of this virus to the public, like wearing masks, hand hygiene, social distancing, shutting down all types of public transports, etc. These conditions led to a worldwide economic fall drastically, and on the other hand, indirect environmental benefits like global air quality improvement and decreased water pollution are also pictured. Currently, use of face masks is part of a comprehensive package of the prevention and control measures that can limit the spread of COVID-19 since there is no clinically proven drugs or vaccine available for COVID-19. Mostly, face masks are made of petroleum-based non-renewable polymers that are non-biodegradable, hazardous to the environment and create health issues. This study demonstrates the extensive use of the face mask and how it affects human health and the marine ecosystem. It has become a great challenge for the government sectors to impose strict regulations for the proper disposal of the masks as medical waste by the public. Neglecting the seriousness of this issue may lead to the release of large tonnes of micro-plastics to the landfill as well as to the marine environment where mostly end-up and thereby affecting their fauna and flora population vastly. Besides, this study highlights the COVID-19 spread, its evolutionary importance, taxonomy, genomic structure, transmission to humans, prevention, and treatment.


Subject(s)
COVID-19 , Pandemics , Ecosystem , Humans , Masks , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL