Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Arch Toxicol ; 2022 May 17.
Article in English | MEDLINE | ID: covidwho-1844344

ABSTRACT

BriLife®, a vector-based vaccine that utilizes the recombinant vesicular stomatitis virus (VSV) platform to express and present the spike antigen of SARS-CoV-2, is undergoing testing in a phase 2 clinical trial in Israel. A nonclinical repeated-dose (GLP) toxicity study in New Zealand white rabbits was performed to evaluate the potential toxicity, local tolerance, immunogenicity and biodistribution of the vaccine. rVSV-ΔG-SARS-CoV-2-S (or vehicle) was administered intramuscularly to two groups of animals (106, 107 PFU/animal, n = 10/sex/group) on three occasions, at 2-week intervals, followed by a 3-week recovery period. Systemic clinical signs, local reactions, body weight, body temperature, food consumption, ophthalmology, urinalysis, clinical pathology, C-reactive protein, viremia and antibody levels were monitored. Gross pathology was performed, followed by organs/tissues collection for biodistribution and histopathological evaluation. Treatment-related changes were restricted to multifocal minimal myofiber necrosis at the injection sites, and increased lymphocytic cellularity in the iliac and mesenteric lymph nodes and in the spleen. These changes were considered related to the inflammatory reaction elicited, and correlated with a trend for recovery. Detection of rVSV-ΔG-SARS-CoV-2-S vaccine RNA was noted in the regional iliac lymph node in animals assigned to the high-dose group, at both termination time points. A significant increase in binding and neutralizing antibody titers was observed following vaccination at both vaccine doses. In view of the findings, it was concluded that the rVSV-ΔG-SARS-CoV-2-S vaccine is safe. These results supported the initiation of clinical trials.

2.
J Am Soc Nephrol ; 32(9): 2242-2254, 2021 09.
Article in English | MEDLINE | ID: covidwho-1702796

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) causes significan t morbidity, mainly from pulmonary involvement, extrapulmonary symptoms are also major componen ts of the disease. Kidney disease, usually presenting as AKI, is particularly severe among patients with COVID-19. It is unknown, however, whether such injury results from direct kidney infection with COVID-19's causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or from indirect mechanisms. METHODS: Using ex vivo cell models, we sought to analyze SARS-CoV-2 interactions with kidney tubular cells and assess direct tubular injury. These models comprised primary human kidney epithelial cells (derived from nephrectomies) and grown as either proliferating monolayers or quiescent three-dimensional kidney spheroids. RESULTS: We demonstrated that viral entry molecules and high baseline levels of type 1 IFN-related molecules were present in monolayers and kidney spheroids. Although both models support viral infection and replication, they did not exhibit a cytopathic effect and cell death, outcomes that were strongly present in SARS-CoV-2-infected controls (African green monkey kidney clone E6 [Vero E6] cultures). A comparison of monolayer and spheroid cultures demonstrated higher infectivity and replication of SARS-CoV-2 in actively proliferating monolayers, although the spheroid cultures exhibited high er levels of ACE2. Monolayers exhibited elevation of some tubular injury molecules-including molecules related to fibrosis (COL1A1 and STAT6) and dedifferentiation (SNAI2)-and a loss of cell identity, evident by reduction in megalin (LRP2). The three-dimensional spheroids were less prone to such injury. CONCLUSIONS: SARS-CoV-2 can infect kidney cells without a cytopathic effect. AKI-induced cellular proliferation may potentially intensify infectivity and tubular damage by SARS-CoV-2, suggesting that early intervention in AKI is warranted to help minimize kidney infection.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/virology , COVID-19/complications , SARS-CoV-2/pathogenicity , Spheroids, Cellular/virology , Animals , Cells, Cultured , Chlorocebus aethiops , Cohort Studies , Cytopathogenic Effect, Viral , Epithelial Cells/pathology , Epithelial Cells/virology , Host Microbial Interactions , Humans , Interferon Type I/metabolism , Kidney/immunology , Kidney/pathology , Kidney/virology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Biological , Pandemics , Receptors, Virus/metabolism , Retrospective Studies , SARS-CoV-2/physiology , Spheroids, Cellular/pathology , Vero Cells , Virus Replication
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-304759

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause for the ongoing COVID-19 pandemic1. The continued spread of SARS-CoV-2 along with the imminent flu season increase the probability of influenza-SARS-CoV-2 dual infection which might result in a severe disease. In this study, we examined the disease outcome of influenza A virus (IAV) and SARS-CoV-2 co-infection in K18-hACE2 mice. Our data indicates that IAV-infected mice are more susceptible to develop severe disease upon co-infection with SARS-CoV-2 two days post influenza infection. This co-infection results in severe morbidity and nearly uniform fatality as compared to the non-fatal influenza disease, or the partial fatality of SARS-CoV-2 alone. Co-infection was associated with elevated influenza viral load in respiratory organs. Remarkably, prior immunity to influenza, but not to SARS-CoV-2, prevented the severe disease and mortality. These data provide an experimental support that flu intervention by prior vaccination may be valuable in reducing the risk of sever Flu - SARS-CoV-2 comorbidity, and highlight the importance of vaccination.

4.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: covidwho-1625815

ABSTRACT

SARS-CoV-2, a member of the coronavirus family, is the causative agent of the COVID-19 pandemic. Currently, there is still an urgent need in developing an efficient therapeutic intervention. In this study, we aimed at evaluating the therapeutic effect of a single intranasal treatment of the TLR3/MDA5 synthetic agonist Poly(I:C) against a lethal dose of SARS-CoV-2 in K18-hACE2 transgenic mice. We demonstrate here that early Poly(I:C) treatment acts synergistically with SARS-CoV-2 to induce an intense, immediate and transient upregulation of innate immunity-related genes in lungs. This effect is accompanied by viral load reduction, lung and brain cytokine storms prevention and increased levels of macrophages and NK cells, resulting in 83% mice survival, concomitantly with long-term immunization. Thus, priming the lung innate immunity by Poly(I:C) or alike may provide an immediate, efficient and safe protective measure against SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , COVID-19/prevention & control , Immunity, Innate , Poly I-C/immunology , Poly I-C/therapeutic use , SARS-CoV-2/drug effects , Toll-Like Receptor 3/agonists , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Disease Models, Animal , Female , Humans , Lung/immunology , Lung/virology , Mice , Mice, Transgenic , SARS-CoV-2/immunology , Toll-Like Receptor 3/immunology , Viral Load/drug effects
5.
Life Sci Alliance ; 5(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1515726

ABSTRACT

Understanding pathways that might impact coronavirus disease 2019 (COVID-19) manifestations and disease outcomes is necessary for better disease management and for therapeutic development. Here, we analyzed alterations in sphingolipid (SL) levels upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection induced elevation of SL levels in both cells and sera of infected mice. A significant increase in glycosphingolipid levels was induced early post SARS-CoV-2 infection, which was essential for viral replication. This elevation could be reversed by treatment with glucosylceramide synthase inhibitors. Levels of sphinganine, sphingosine, GA1, and GM3 were significantly increased in both cells and the murine model upon SARS-CoV-2 infection. The potential involvement of SLs in COVID-19 pathology is discussed.


Subject(s)
COVID-19/metabolism , Disease Models, Animal , Sphingolipids/metabolism , Virus Replication/physiology , Animals , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Chromatography, Liquid/methods , Dioxanes/pharmacology , Gangliosides/blood , Gangliosides/metabolism , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Humans , Mass Spectrometry/methods , Mice, Transgenic , Pyrrolidines/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sphingolipids/blood , Sphingosine/analogs & derivatives , Sphingosine/blood , Sphingosine/metabolism , Vero Cells , Virus Replication/drug effects
6.
Nat Commun ; 12(1): 5819, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1454763

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The continued spread of SARS-CoV-2 increases the probability of influenza/SARS-CoV-2 coinfection, which may result in severe disease. In this study, we examine the disease outcome of influenza A virus (IAV) and SARS-CoV-2 coinfection in K18-hACE2 mice. Our data indicate enhance susceptibility of IAV-infected mice to developing severe disease upon coinfection with SARS-CoV-2 two days later. In contrast to nonfatal influenza and lower mortality rates due to SARS-CoV-2 alone, this coinfection results in severe morbidity and nearly complete mortality. Coinfection is associated with elevated influenza viral loads in respiratory organs. Remarkably, prior immunity to influenza, but not to SARS-CoV-2, prevents severe disease and mortality. This protection is antibody-dependent. These data experimentally support the necessity of seasonal influenza vaccination for reducing the risk of severe influenza/COVID-19 comorbidity during the COVID-19 pandemic.


Subject(s)
COVID-19/immunology , COVID-19/virology , Coinfection/immunology , Coinfection/virology , Immunity , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/immunology , COVID-19/pathology , Cell Line , Disease Models, Animal , Female , Humans , Inflammation/genetics , Lung/pathology , Lung/virology , Male , Mice, Inbred C57BL , Mice, Transgenic , Up-Regulation/genetics , Viral Load/immunology
7.
J Am Soc Nephrol ; 32(9): 2242-2254, 2021 09.
Article in English | MEDLINE | ID: covidwho-1266593

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) causes significan t morbidity, mainly from pulmonary involvement, extrapulmonary symptoms are also major componen ts of the disease. Kidney disease, usually presenting as AKI, is particularly severe among patients with COVID-19. It is unknown, however, whether such injury results from direct kidney infection with COVID-19's causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or from indirect mechanisms. METHODS: Using ex vivo cell models, we sought to analyze SARS-CoV-2 interactions with kidney tubular cells and assess direct tubular injury. These models comprised primary human kidney epithelial cells (derived from nephrectomies) and grown as either proliferating monolayers or quiescent three-dimensional kidney spheroids. RESULTS: We demonstrated that viral entry molecules and high baseline levels of type 1 IFN-related molecules were present in monolayers and kidney spheroids. Although both models support viral infection and replication, they did not exhibit a cytopathic effect and cell death, outcomes that were strongly present in SARS-CoV-2-infected controls (African green monkey kidney clone E6 [Vero E6] cultures). A comparison of monolayer and spheroid cultures demonstrated higher infectivity and replication of SARS-CoV-2 in actively proliferating monolayers, although the spheroid cultures exhibited high er levels of ACE2. Monolayers exhibited elevation of some tubular injury molecules-including molecules related to fibrosis (COL1A1 and STAT6) and dedifferentiation (SNAI2)-and a loss of cell identity, evident by reduction in megalin (LRP2). The three-dimensional spheroids were less prone to such injury. CONCLUSIONS: SARS-CoV-2 can infect kidney cells without a cytopathic effect. AKI-induced cellular proliferation may potentially intensify infectivity and tubular damage by SARS-CoV-2, suggesting that early intervention in AKI is warranted to help minimize kidney infection.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/virology , COVID-19/complications , SARS-CoV-2/pathogenicity , Spheroids, Cellular/virology , Animals , Cells, Cultured , Chlorocebus aethiops , Cohort Studies , Cytopathogenic Effect, Viral , Epithelial Cells/pathology , Epithelial Cells/virology , Host Microbial Interactions , Humans , Interferon Type I/metabolism , Kidney/immunology , Kidney/pathology , Kidney/virology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Biological , Pandemics , Receptors, Virus/metabolism , Retrospective Studies , SARS-CoV-2/physiology , Spheroids, Cellular/pathology , Vero Cells , Virus Replication
8.
J Biol Chem ; 296: 100470, 2021.
Article in English | MEDLINE | ID: covidwho-1101336

ABSTRACT

The ongoing COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major threat to global health. Vaccines are ideal solutions to prevent infection, but treatments are also needed for those who have contracted the virus to limit negative outcomes, when vaccines are not applicable. Viruses must cross host cell membranes during their life cycle, creating a dependency on processes involving membrane dynamics. Thus, in this study, we examined whether the synthetic machinery for glycosphingolipids, biologically active components of cell membranes, can serve as a therapeutic target to combat SARS-CoV-2. We examined the antiviral effect of two specific inhibitors of glucosylceramide synthase (GCS): (i) Genz-123346, an analogue of the United States Food and Drug Administration-approved drug Cerdelga and (ii) GENZ-667161, an analogue of venglustat, which is currently under phase III clinical trials. We found that both GCS inhibitors inhibit replication of SARS-CoV-2. Moreover, these inhibitors also disrupt replication of influenza virus A/PR/8/34 (H1N1). Our data imply that synthesis of glycosphingolipids is necessary to support viral life cycles and suggest that GCS inhibitors should be further explored as antiviral therapies.


Subject(s)
Antiviral Agents/pharmacology , Carbamates/pharmacology , Dioxanes/pharmacology , Glucosyltransferases/antagonists & inhibitors , Glycosphingolipids/antagonists & inhibitors , Influenza A Virus, H1N1 Subtype/drug effects , Pyrrolidines/pharmacology , Quinuclidines/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , COVID-19/drug therapy , COVID-19/enzymology , COVID-19/virology , Carbamates/chemical synthesis , Cell Membrane/drug effects , Cell Membrane/enzymology , Cell Membrane/virology , Chlorocebus aethiops , Clinical Trials, Phase III as Topic , Dioxanes/chemical synthesis , Dogs , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glycosphingolipids/biosynthesis , Host-Pathogen Interactions/genetics , Humans , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/drug therapy , Influenza, Human/enzymology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Pyrrolidines/chemical synthesis , Quinuclidines/chemical synthesis , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Signal Transduction , Vero Cells , Virus Replication/drug effects
9.
Nat Commun ; 11(1): 6402, 2020 12 16.
Article in English | MEDLINE | ID: covidwho-983658

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 imposes an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we show the development of a replication competent recombinant VSV-∆G-spike vaccine, in which the glycoprotein of VSV is replaced by the spike protein of SARS-CoV-2. In-vitro characterization of this vaccine indicates the expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in-vivo model for COVID-19 is implemented. We show that a single-dose vaccination results in a rapid and potent induction of SARS-CoV-2 neutralizing antibodies. Importantly, vaccination protects hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss, and  alleviation of the extensive tissue damage and viral loads in lungs and nasal turbinates. Taken together, we suggest the recombinant VSV-∆G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Vesicular stomatitis Indiana virus/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Body Weight , COVID-19/virology , Cell Line , Cricetinae , Disease Models, Animal , Dose-Response Relationship, Immunologic , Genome, Viral , Lung/pathology , Lung/virology , Mice, Inbred C57BL , Mutation/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/ultrastructure , Vaccination , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL