Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Year range
1.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1919013

ABSTRACT

Striking number of mutations found in the spike protein of recently emerged SARS-CoV-2 Omicron subvariants BA.1, BA.2, BA.3 and BA.4/5 has raised serious concerns regarding the escape from current antibody therapies and vaccine protection. Here, we conducted comprehensive analysis on the extent of two major Omicron lineages BA.1/BA.1.1 and BA.2 to escape neutralization from the therapeutic antibodies approved by the regulatory authorities and convalescent plasma from SARS-CoV-2 patients infected during initial wave of pandemic in early 2020. We showed that Omicron BA.1/BA.1.1 were the most resistant in both magnitude and breadth against antibodies and convalescent plasma, followed by Beta, BA.2, Gamma, Delta and Alpha. While the majority of therapeutic antibodies lost binding and neutralization to Omicron variants, BRII combo (BRII-196 + BRII-198), S309, and AZ combo (COV2-2196 + COV2-2130) maintained neutralization despite of reduction due to either conserved epitope or combinational effect between the two designated antibodies. A single intraperitoneal injection of BRII combo as a prophylactic treatment protected animals from Omicron infection. Treated animals manifested normal body weight, survived infection up to 14 days, undetectable levels of infectious viruses in the lungs, and reduced lung pathology compared to the controls. Analyzing ACE2 from diverse host species showed that Omicron variants acquired ability to use mouse ACE2 for entry. These results demonstrate major antigenic shifts and potentially broadening the host range of two major Omicron lineages BA.1/BA.1.1 and BA.2, posing serious challenges to current antibody therapies and vaccine protection as well as increasing danger of spillover into the wildlife.

2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-332958

ABSTRACT

As SARS-CoV-2 Omicron and other variants of concern continue spreading around the world, development of antibodies and vaccines to confer broad and protective activity is a global priority. Here, we report on the identification of a special group of nanobodies from immunized alpaca with exceptional breadth and potency against diverse sarbecoviruses including SARS-CoV-1, Omicron BA.1, and BA.2. Crystal structure analysis of one representative nanobody, 3-2A2-4, revealed a highly conserved epitope between the cryptic and the outer face of the receptor binding domain (RBD). The epitope is readily accessible regardless of RBD in up or down conformation and distinctive from the receptor ACE2 binding site. Passive delivery of 3-2A2-4 protected K18-hACE2 mice from infection of authentic SARS-CoV-2 Delta and Omicron. This group of nanobodies and the epitope identified should provide invaluable reference for the development of next generation antibody therapies and vaccines against wide varieties of SARS-CoV-2 infection and beyond.

3.
Front Immunol ; 12: 766821, 2021.
Article in English | MEDLINE | ID: covidwho-1581335

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge and spread around the world, antibodies and vaccines to confer broad and potent neutralizing activity are urgently needed. Through the isolation and characterization of monoclonal antibodies (mAbs) from individuals infected with SARS-CoV-2, we identified one antibody, P36-5D2, capable of neutralizing the major SARS-CoV-2 variants of concern. Crystal and electron cryo-microscopy (cryo-EM) structure analyses revealed that P36-5D2 targeted to a conserved epitope on the receptor-binding domain of the spike protein, withstanding the three key mutations-K417N, E484K, and N501Y-found in the variants that are responsible for escape from many potent neutralizing mAbs, including some already approved for emergency use authorization (EUA). A single intraperitoneal (IP) injection of P36-5D2 as a prophylactic treatment completely protected animals from challenge of infectious SARS-CoV-2 Alpha and Beta. Treated animals manifested normal body weight and were devoid of infection-associated death up to 14 days. A substantial decrease of the infectious virus in the lungs and brain, as well as reduced lung pathology, was found in these animals compared to the controls. Thus, P36-5D2 represents a new and desirable human antibody against the current and emerging SARS-CoV-2 variants.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/drug therapy , SARS-CoV-2/drug effects , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , HEK293 Cells , Humans , Immunization, Passive , Mice
SELECTION OF CITATIONS
SEARCH DETAIL