Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMC Med ; 20(1): 370, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2053904

ABSTRACT

BACKGROUND: West Africa has recorded a relatively higher proportion of asymptomatic coronavirus disease 2019 (COVID-19) cases than the rest of the world, and West Africa-specific host factors could play a role in this discrepancy. Here, we assessed the association between COVID-19 severity among Ghanaians with their immune profiles and ABO blood groups. METHODS: Plasma samples were obtained from Ghanaians PCR-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive individuals. The participants were categorized into symptomatic and asymptomatic cases. Cytokine profiling and antibody quantification were performed using Luminex™ multiplex assay whereas antigen-driven agglutination assay was used to assess the ABO blood groups. Immune profile levels between symptomatic and asymptomatic groups were compared using the two-tailed Mann-Whitney U test. Multiple comparisons of cytokine levels among and between days were tested using Kruskal-Wallis with Dunn's post hoc test. Correlations within ABO blood grouping (O's and non-O's) and between cytokines were determined using Spearman correlations. Logistic regression analysis was performed to assess the association of various cytokines with asymptomatic phenotype. RESULTS: There was a trend linking blood group O to reduced disease severity, but this association was not statistically significant. Generally, symptomatic patients displayed significantly (p < 0.05) higher cytokine levels compared to asymptomatic cases with exception of Eotaxin, which was positively associated with asymptomatic cases. There were also significant (p < 0.05) associations between other immune markers (IL-6, IL-8 and IL-1Ra) and disease severity. Cytokines' clustering patterns differ between symptomatic and asymptomatic cases. We observed a steady decrease in the concentration of most cytokines over time, while anti-SARS-CoV-2 antibody levels were stable for at least a month, regardless of the COVID-19 status. CONCLUSIONS: The findings suggest that genetic background and pre-existing immune response patterns may in part shape the nature of the symptomatic response against COVID-19 in a West African population. This study offers clear directions to be explored further in larger studies.


Subject(s)
COVID-19 , ABO Blood-Group System , Biomarkers , COVID-19/epidemiology , Cytokines , Ghana/epidemiology , Humans , Interleukin 1 Receptor Antagonist Protein , Interleukin-6 , Interleukin-8 , SARS-CoV-2
2.
Nat Commun ; 13(1): 3645, 2022 Jun 25.
Article in English | MEDLINE | ID: covidwho-1908172

ABSTRACT

Recombination is an evolutionary process by which many pathogens generate diversity and acquire novel functions. Although a common occurrence during coronavirus replication, detection of recombination is only feasible when genetically distinct viruses contemporaneously infect the same host. Here, we identify an instance of SARS-CoV-2 superinfection, whereby an individual was infected with two distinct viral variants: Alpha (B.1.1.7) and Epsilon (B.1.429). This superinfection was first noted when an Alpha genome sequence failed to exhibit the classic S gene target failure behavior used to track this variant. Full genome sequencing from four independent extracts reveals that Alpha variant alleles comprise around 75% of the genomes, whereas the Epsilon variant alleles comprise around 20% of the sample. Further investigation reveals the presence of numerous recombinant haplotypes spanning the genome, specifically in the spike, nucleocapsid, and ORF 8 coding regions. These findings support the potential for recombination to reshape SARS-CoV-2 genetic diversity.


Subject(s)
COVID-19 , Superinfection , Genome, Viral/genetics , Humans , New York City/epidemiology , Recombination, Genetic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
J Infect ; 84(1): 48-55, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1446863

ABSTRACT

Background Controlling the spread of SARS-CoV-2 is problematic because of transmission driven by asymptomatic and pre-symptomatic individuals. Community screening can help identify these individuals but is often too expensive for countries with limited health care resources. Low-cost ELISA assays may address this problem, but their use has not yet been widely reported. Methods We developed a SARS-CoV-2 nucleocapsid ELISA and assessed its diagnostic performance on nose and throat swab samples from UK hospitalised patients and sputum samples from patients in Ghana. Results The ELISA had a limit of detection of 8.4 pg/ml antigen and 16 pfu/ml virus. When tested on UK samples (128 positive and 10 negative patients), sensitivity was 58.6% (49.6-67.2) rising to 78.3% (66.7-87.3) if real-time PCR Ct values > 30 were excluded, while specificity was 100% (69.2-100). In a second trial using the Ghanaian samples (121 positive, 96 negative), sensitivity was 52% (42.8-61.2) rising to 72.6% (61.8-81.2) when a > 30 Ct cut-off was applied, while specificity was 100% (96.2-100). Conclusions: Our data show that nucleocapsid ELISAs can test a variety of patient sample types while achieving levels of sensitivity and specificity required for effective community screening. Further investigations into the opportunities that this provides are warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Enzyme-Linked Immunosorbent Assay , Ghana , Humans , Nucleocapsid , Sensitivity and Specificity
4.
Nat Med ; 27(11): 2041-2047, 2021 11.
Article in English | MEDLINE | ID: covidwho-1392876

ABSTRACT

Countries of the World Health Organization (WHO) African Region have experienced a wide range of coronavirus disease 2019 (COVID-19) epidemics. This study aimed to identify predictors of the timing of the first COVID-19 case and the per capita mortality in WHO African Region countries during the first and second pandemic waves and to test for associations with the preparedness of health systems and government pandemic responses. Using a region-wide, country-based observational study, we found that the first case was detected earlier in countries with more urban populations, higher international connectivity and greater COVID-19 test capacity but later in island nations. Predictors of a high first wave per capita mortality rate included a more urban population, higher pre-pandemic international connectivity and a higher prevalence of HIV. Countries rated as better prepared and having more resilient health systems were worst affected by the disease, the imposition of restrictions or both, making any benefit of more stringent countermeasures difficult to detect. Predictors for the second wave were similar to the first. Second wave per capita mortality could be predicted from that of the first wave. The COVID-19 pandemic highlights unanticipated vulnerabilities to infectious disease in Africa that should be taken into account in future pandemic preparedness planning.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Adult , Africa/epidemiology , Child , Epidemics , Female , Humans , Infant, Newborn , Male , Pandemics , Pregnancy , Risk Factors , SARS-CoV-2/physiology , Socioeconomic Factors , World Health Organization
5.
Exp Biol Med (Maywood) ; 246(8): 960-970, 2021 04.
Article in English | MEDLINE | ID: covidwho-978882

ABSTRACT

The confirmed case fatality rate for the coronavirus disease 2019 (COVID-19) in Ghana has dropped from a peak of 2% in March to be consistently below 1% since May 2020. Globally, case fatality rates have been linked to the strains/clades of circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific country. Here we present 46 whole genomes of SARS-CoV-2 circulating in Ghana, from two separate sequencing batches: 15 isolates from the early epidemic (March 12-April 1 2020) and 31 from later time-points ( 25-27 May 2020). Sequencing was carried out on an Illumina MiSeq system following an amplicon-based enrichment for SARS-CoV-2 cDNA. After genome assembly and quality control processes, phylogenetic analysis showed that the first batch of 15 genomes clustered into five clades: 19A, 19B, 20A, 20B, and 20C, whereas the second batch of 31 genomes clustered to only three clades 19B, 20A, and 20B. The imported cases (6/46) mapped to circulating viruses in their countries of origin, namely, India, Hungary, Norway, the United Kingdom, and the United States of America. All genomes mapped to the original Wuhan strain with high similarity (99.5-99.8%). All imported strains mapped to the European superclade A, whereas 5/9 locally infected individuals harbored the B4 clade, from the East Asian superclade B. Ghana appears to have 19B and 20B as the two largest circulating clades based on our sequence analyses. In line with global reports, the D614G linked viruses seem to be predominating. Comparison of Ghanaian SARS-CoV-2 genomes with global genomes indicates that Ghanaian strains have not diverged significantly from circulating strains commonly imported into Africa. The low level of diversity in our genomes may indicate lower levels of transmission, even for D614G viruses, which is consistent with the relatively low levels of infection reported in Ghana.


Subject(s)
Evolution, Molecular , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , COVID-19/epidemiology , Ghana/epidemiology , Humans , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL