Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Hum Vaccin Immunother ; 19(1): 2203632, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-2304772

ABSTRACT

Optimum formulation of Biological-E's protein subunit CORBEVAX™ vaccine was selected in phase-1 and -2 studies and found to be safe and immunogenic in healthy adult population. This is a phase-3 prospective, single-blinded, randomized, active controlled study conducted at 18 sites across India in 18-80 year-old subjects. This study has two groups; (i) immunogenicity-group, participants randomized either to CORBEVAX™ (n = 319) or COVISHIELD™ arms (n = 320). (ii) Safety-group containing single CORBEVAX™ arm (n = 1500) and randomization is not applicable. Healthy adults without a history of COVID-19 vaccination or SARS-CoV-2 infection were enrolled into immunogenicity arm and subjects seronegative to SARS-CoV-2 infection were enrolled into the safety arm. The safety profile of CORBEVAX™ vaccine was comparable to the comparator vaccine COVISHIELD™. Majority of reported AEs were mild in nature in both arms. The CORBEVAX™ to COVISHIELD™ GMT-ratios at day-42 time-point were 1·15 and 1·56 and the lower limit of the 95% confidence interval for the GMT-ratios was determined as 1·02 and 1·27 against Ancestral and Delta strains of SARS-COV-2 respectively. Both COVISHIELD™ and CORBEVAX™ vaccines showed comparable seroconversion post-vaccination against anti-RBD-IgG response. The subjects in CORBEVAX™ cohort also exhibited higher interferon-gamma secreting PBMC's post-stimulation with SARS-COV-2 RBD-peptides than subjects in COVISHIELD™ cohort.


Subject(s)
COVID-19 , Vaccines , Adult , Humans , Adolescent , Young Adult , Middle Aged , Aged , Aged, 80 and over , ChAdOx1 nCoV-19 , COVID-19 Vaccines/adverse effects , Leukocytes, Mononuclear , Prospective Studies , Single-Blind Method , COVID-19/prevention & control , SARS-CoV-2 , Immunogenicity, Vaccine , Antibodies, Viral , Antibodies, Neutralizing , Double-Blind Method
2.
Front Mol Biosci ; 10: 1133123, 2023.
Article in English | MEDLINE | ID: covidwho-2278924

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has caused millions of infections and deaths worldwide. Limited treatment options and the threat from emerging variants underline the need for novel and widely accessible therapeutics. G-quadruplexes (G4s) are nucleic acid secondary structures known to affect many cellular processes including viral replication and transcription. We identified heretofore not reported G4s with remarkably low mutation frequency across >5 million SARS-CoV-2 genomes. The G4 structure was targeted using FDA-approved drugs that can bind G4s - Chlorpromazine (CPZ) and Prochlorperazine (PCZ). We found significant inhibition in lung pathology and lung viral load of SARS-CoV-2 challenged hamsters when treated with CPZ or PCZ that was comparable to the widely used antiviral drug Remdesivir. In support, in vitro G4 binding, inhibition of reverse transcription from RNA isolated from COVID-infected humans, and attenuated viral replication and infectivity in Vero cell cultures were clear in case of both CPZ and PCZ. Apart from the wide accessibility of CPZ/PCZ, targeting relatively invariant nucleic acid structures poses an attractive strategy against viruses like SARS-CoV-2, which spread fast and accumulate mutations quickly.

3.
Front Immunol ; 14: 1138215, 2023.
Article in English | MEDLINE | ID: covidwho-2278429

ABSTRACT

Cytokine release syndrome (CRS) due to severe acute respiratory coronavirus-2 (SARS-CoV-2) infection leads to life-threatening pneumonia which has been associated with coronavirus disease (COVID-19) pathologies. Centuries-old Asian traditional medicines such as Withania somnifera (L.) Dunal (WS) and Tinospora cordifolia (Willd.) Miers (TC) possess potent immunomodulatory effects and were used by the AYUSH ministry, in India during the COVID-19 pandemic. In the present study, we investigated WS and TC's anti-viral and immunomodulatory efficacy at the human equivalent doses using suitable in vitro and in vivo models. While both WS and TC showed immuno-modulatory potential, WS showed robust protection against loss in body weight, viral load, and pulmonary pathology in the hamster model of SARS-CoV2. In vitro pretreatment of mice and human neutrophils with WS and TC had no adverse effect on PMA, calcium ionophore, and TRLM-induced ROS generation, phagocytosis, bactericidal activity, and NETs formation. Interestingly, WS significantly suppressed the pro-inflammatory cytokines-induced Th1, Th2, and Th17 differentiation. We also used hACE2 transgenic mice to further investigate the efficacy of WS against acute SARS-CoV2 infection. Prophylactic treatment of WS in the hACE2 mice model showed significant protection against body weight loss, inflammation, and the lung viral load. The results obtained indicate that WS promoted the immunosuppressive environment in the hamster and hACE2 transgenic mice models and limited the worsening of the disease by reducing inflammation, suggesting that WS might be useful against other acute viral infections. The present study thus provides pre-clinical efficacy data to demonstrate a robust protective effect of WS against COVID-19 through its broader immunomodulatory activity.


Subject(s)
COVID-19 , Tinospora , Withania , Animals , Mice , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Neutrophils , Pandemics , RNA, Viral , SARS-CoV-2 , Cell Differentiation , Inflammation/drug therapy , Models, Theoretical , Mice, Transgenic
4.
Med Microbiol Immunol ; 212(1): 103-122, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2266231

ABSTRACT

The SARS-CoV-2 virus has been rapidly evolving over the time and the genetic variation has led to the generation of Variants of Concerns (VoC), which have shown increased fitness. These VoC viruses contain the key mutations in the spike protein which have allowed better survival and evasion of host defense mechanisms. The D614G mutation in the spike domain is found in the majority of VoC; additionally, the P681R/H mutation at the S1/S2 furin cleavage site junction is also found to be highly conserved in major VoCs; Alpha, Delta, Omicron, and its' current variants. The impact of these genetic alterations of the SARS-CoV-2 VoCs on the host cell entry, transmissibility, and infectivity has not been clearly identified. In our study, Delta and D614G + P681R synthetic double mutant pseudoviruses showed a significant increase in the cell entry, cell-to-cell fusion and infectivity. In contrast, the Omicron and P681H synthetic single mutant pseudoviruses showed TMPRSS2 independent cell entry, less fusion and infectivity as compared to Delta and D614G + P681R double mutants. Addition of exogenous trypsin further enhanced fusion in Delta viruses as compared to Omicron. Furthermore, Delta viruses showed susceptibility to both E64d and Camostat mesylate inhibitors suggesting, that the Delta virus could exploit both endosomal and TMPRSS2 dependent entry pathways as compared to the Omicron virus. Taken together, these results indicate that the D614G and P681R/H mutations in the spike protein are pivotal which might be favoring the VoC replication in different host compartments, and thus allowing a balance of mutation vs selection for better long-term adaptation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Mutation
5.
Front Immunol ; 13: 945583, 2022.
Article in English | MEDLINE | ID: covidwho-2154720

ABSTRACT

Severe coronavirus disease (COVID-19) is accompanied by acute respiratory distress syndrome and pulmonary pathology, and is presented mostly with an inflammatory cytokine release, a dysregulated immune response, a skewed neutrophil/lymphocyte ratio, and a hypercoagulable state. Though vaccinations have proved effective in reducing the COVID-19-related mortality, the limitation of the use of vaccine against immunocompromised individuals, those with comorbidity, and emerging variants remains a concern. In the current study, we investigate for the first time the efficacy of the Glycyrrhiza glabra (GG) extract, a potent immunomodulator, against SARS-CoV-2 infection in hamsters. Prophylactic treatment with GG showed protection against loss in body weight and a 35%-40% decrease in lung viral load along with reduced lung pathology in the hamster model. Remarkably, GG reduced the mRNA expression of pro-inflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1). In vitro, GG acted as a potent immunomodulator by reducing Th2 and Th17 differentiation and IL-4 and IL-17A cytokine production. In addition, GG also showed robust potential to suppress ROS, mtROS, and NET generation in a concentration-dependent manner in both human polymorphonuclear neutrophils (PMNs) and murine bone marrow-derived neutrophils (BMDNs). Taken together, we provide evidence for the protective efficacy of GG against COVID-19 and its putative mechanistic insight through its immunomodulatory properties. Our study provides the proof of concept for GG efficacy against SARS-CoV-2 using a hamster model and opens the path for further studies aimed at identifying the active ingredients of GG and its efficacy in COVID-19 clinical cases.


Subject(s)
COVID-19 , Glycyrrhiza , Animals , Cricetinae , Cytokines/metabolism , Glycyrrhiza/metabolism , Humans , Interleukin-17 , Interleukin-4 , Mice , Plasminogen Activator Inhibitor 1 , RNA, Messenger , Reactive Oxygen Species , SARS-CoV-2
6.
Life Sci ; 313: 121271, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2159516

ABSTRACT

Mitochondria are dynamic cellular organelles with diverse functions including energy production, calcium homeostasis, apoptosis, host innate immune signaling, and disease progression. Several viral proteins specifically target mitochondria to subvert host defense as mitochondria stand out as the most suitable target for the invading viruses. They have acquired the capability to control apoptosis, metabolic state, and evade immune responses in host cells, by targeting mitochondria. In this way, the viruses successfully allow the spread of viral progeny and thus the infection. Viruses employ their proteins to alter mitochondrial dynamics and their specific functions by a modulation of membrane potential, reactive oxygen species, calcium homeostasis, and mitochondrial bioenergetics to help them achieve a state of persistent infection. A better understanding of such viral proteins and their impact on mitochondrial forms and functions is the main focus of this review. We also attempt to emphasize the importance of exploring the role of mitochondria in the context of SARS-CoV2 pathogenesis and identify host-virus protein interactions.


Subject(s)
Mitochondria , Viral Proteins , Humans , Calcium/metabolism , Mitochondria/metabolism , Mitochondria/virology , RNA, Viral/metabolism , Viral Proteins/metabolism , Viruses/pathogenicity
7.
PLoS Pathog ; 18(12): e1010994, 2022 12.
Article in English | MEDLINE | ID: covidwho-2162605

ABSTRACT

The emergence of new variants of SARS-CoV-2 necessitates unremitting efforts to discover novel therapeutic monoclonal antibodies (mAbs). Here, we report an extremely potent mAb named P4A2 that can neutralize all the circulating variants of concern (VOCs) with high efficiency, including the highly transmissible Omicron. The crystal structure of the P4A2 Fab:RBD complex revealed that the residues of the RBD that interact with P4A2 are a part of the ACE2-receptor-binding motif and are not mutated in any of the VOCs. The pan coronavirus pseudotyped neutralization assay confirmed that the P4A2 mAb is specific for SARS-CoV-2 and its VOCs. Passive administration of P4A2 to K18-hACE2 transgenic mice conferred protection, both prophylactically and therapeutically, against challenge with VOCs. Overall, our data shows that, the P4A2 mAb has immense therapeutic potential to neutralize the current circulating VOCs. Due to the overlap between the P4A2 epitope and ACE2 binding site on spike-RBD, P4A2 may also be highly effective against a number of future variants.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/therapy , Mice, Transgenic , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics
8.
Vaccine ; 40(49): 7130-7140, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2096111

ABSTRACT

BACKGROUND: After establishing safety and immunogenicity of Biological-E's CORBEVAX™ vaccine in adult population (18-80 years) in Phase 1-3 studies, vaccine is further tested in children and adolescents in this study. METHODS: This is a phase-2/3 prospective, randomised, double-blind, placebo-controlled study evaluating safety, reactogenicity, tolerability and immunogenicity of CORBEVAX™ vaccine in children and adolescents of either gender between <18 to ≥12 years of age in Phase-2 and <18 to ≥5 years of age in Phase-Phase-2/Phase-3 with placebo as a control. This study has two age sub-groups; subgroup-1 with subjects <18 to ≥12 years of age and subgroup-2 with subjects <12 to ≥5 years of age. In both sub groups, eligible subjects (SARS-CoV-2 RT-PCR negative and seronegative at baseline) were randomized to receive either CORBEVAX™ vaccine or Placebo in 3:1 ratio. FINDINGS: The safety profile of CORBEVAX™ vaccine in both pediatric cohorts was comparable to the placebo-control group. Majority of reported adverse events (AEs) were mild in nature. No severe or serious-AEs, medically attended AEs (MAAEs) or AEs of special interest (AESI) were reported during the study period and all reported AEs resolved without any sequelae. In both pediatric age groups, CORBEVAX™ vaccinated subjects showed significant improvement in humoral immune-responses in terms of anti-RBD-IgG concentrations, anti-RBD-IgG1 titers, neutralizing-antibody (nAb)-titers against Ancestral-Wuhan and Delta-strains. Significantly high interferon-gamma immune- response (cellular) was elicited by CORBEVAX™ vaccinated subjects with minimal effect on IL-4 cytokine secretion. INTERPRETATIONS: The safety profile of CORBEVAX™ vaccine in <18 to ≥5 years' children and adolescents was found to be safe and tolerable. Significant increase in anti-RBD-IgG and nAb-titers and IFN-gamma immune-responses were observed post-vaccination in both pediatric age sub-groups. The nAb titers observed in both the pediatric age cohorts were non-inferior to the adult cohort (BECT069 study) in terms of ratio of the GMT's of both the cohorts. This study shows that CORBEVAX™ vaccine is highly immunogenic and can be safely administered to pediatric population as young as 5 years old. The study was prospectively registered with clinical trial registry of India- CTRI/2021/10/037066.


Subject(s)
COVID-19 , Vaccines , Adult , Humans , Child , Adolescent , Child, Preschool , SARS-CoV-2 , Prospective Studies , COVID-19/prevention & control , Double-Blind Method , Immunoglobulin G , Immunogenicity, Vaccine , Antibodies, Viral , Antibodies, Neutralizing
9.
Vaccines (Basel) ; 10(10)2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2081866

ABSTRACT

The underlying factors contributing to the evolution of SARS-CoV-2-specific T cell responses during COVID-19 infection remain unidentified. To address this, we characterized innate and adaptive immune responses with metabolomic profiling longitudinally at three different time points (0-3, 7-9, and 14-16 days post-COVID-19 positivity) from young, mildly symptomatic, active COVID-19 patients infected during the first wave in mid-2020. We observed that anti-RBD IgG and viral neutralization are significantly reduced against the delta variant, compared to the ancestral strain. In contrast, compared to the ancestral strain, T cell responses remain preserved against the delta and omicron variants. We determined innate immune responses during the early stage of active infection, in response to TLR 3/7/8-mediated activation in PBMCs and serum metabolomic profiling. Correlation analysis indicated PBMCs-derived proinflammatory cytokines, IL-18, IL-1ß, and IL-23, and the abundance of plasma metabolites involved in arginine biosynthesis were predictive of a robust SARS-CoV-2-specific Th1 response at a later stage (two weeks after PCR positivity). These observations may contribute to designing effective vaccines and adjuvants that promote innate immune responses and metabolites to induce a long-lasting anti-SARS-CoV-2-specific T cell response.

10.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2058383

ABSTRACT

Severe coronavirus disease (COVID-19) is accompanied by acute respiratory distress syndrome and pulmonary pathology, and is presented mostly with an inflammatory cytokine release, a dysregulated immune response, a skewed neutrophil/lymphocyte ratio, and a hypercoagulable state. Though vaccinations have proved effective in reducing the COVID-19-related mortality, the limitation of the use of vaccine against immunocompromised individuals, those with comorbidity, and emerging variants remains a concern. In the current study, we investigate for the first time the efficacy of the Glycyrrhiza glabra (GG) extract, a potent immunomodulator, against SARS-CoV-2 infection in hamsters. Prophylactic treatment with GG showed protection against loss in body weight and a 35%–40% decrease in lung viral load along with reduced lung pathology in the hamster model. Remarkably, GG reduced the mRNA expression of pro-inflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1). In vitro, GG acted as a potent immunomodulator by reducing Th2 and Th17 differentiation and IL-4 and IL-17A cytokine production. In addition, GG also showed robust potential to suppress ROS, mtROS, and NET generation in a concentration-dependent manner in both human polymorphonuclear neutrophils (PMNs) and murine bone marrow-derived neutrophils (BMDNs). Taken together, we provide evidence for the protective efficacy of GG against COVID-19 and its putative mechanistic insight through its immunomodulatory properties. Our study provides the proof of concept for GG efficacy against SARS-CoV-2 using a hamster model and opens the path for further studies aimed at identifying the active ingredients of GG and its efficacy in COVID-19 clinical cases.

11.
ACS Infect Dis ; 8(10): 2119-2132, 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2036751

ABSTRACT

The engineering of virus-like particles (VLPs) is a viable strategy for the development of vaccines and for the identification of therapeutic targets without using live viruses. Here, we report the generation and characterization of quadruple-antigen SARS-CoV-2 VLPs. VLPs were generated by transient transfection of two expression cassettes in adherent HEK293T cells─one cassette containing Mpro for processing of three structural proteins (M, E, and N), and the second cassette expressing the Spike protein. Further characterization revealed that the VLPs retain close morphological and antigenic similarity with the native virus and also bind strongly to the SARS-CoV-2 receptor hACE-2 in an in vitro binding assay. Interestingly, the VLPs were found to internalize into U87-MG cells through cholesterol-rich domains in a dynamin-dependent process. Finally, our results showed that mice immunized with VLPs induce robust humoral and cellular immune responses mediated by enhanced levels of IL-4, IL-17, and IFNγ. Taken together, our results demonstrate that VLPs mimic the native virus and induce a strong immune response, indicating the possible use of these particles as an alternative vaccine candidate against SARS-CoV-2. VLPs can also be effective in mapping the initial stages of virus entry and screening inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/prevention & control , HEK293 Cells , Humans , Interleukin-17 , Interleukin-4 , Mice , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
12.
PLoS Pathog ; 18(4): e1010465, 2022 04.
Article in English | MEDLINE | ID: covidwho-1817511

ABSTRACT

Although efficacious vaccines have significantly reduced the morbidity and mortality of COVID-19, there remains an unmet medical need for treatment options, which monoclonal antibodies (mAbs) can potentially fill. This unmet need is exacerbated by the emergence and spread of SARS-CoV-2 variants of concern (VOCs) that have shown some resistance to vaccine responses. Here we report the isolation of five neutralizing mAbs from an Indian convalescent donor, out of which two (THSC20.HVTR04 and THSC20.HVTR26) showed potent neutralization of SARS-CoV-2 VOCs at picomolar concentrations, including the Delta variant (B.1.617.2). One of these (THSC20.HVTR26) also retained activity against the Omicron variant. These two mAbs target non-overlapping epitopes on the receptor-binding domain (RBD) of the spike protein and prevent virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Furthermore, the mAb cocktail demonstrated protection against the Delta variant at low antibody doses when passively administered in the K18 hACE2 transgenic mice model, highlighting their potential as a cocktail for prophylactic and therapeutic applications. Developing the capacity to rapidly discover and develop mAbs effective against highly transmissible pathogens like coronaviruses at a local level, especially in a low- and middle-income country (LMIC) such as India, will enable prompt responses to future pandemics as an important component of global pandemic preparedness.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Mice , Spike Glycoprotein, Coronavirus
13.
Int J Biol Macromol ; 209(Pt A): 1359-1367, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1800033

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has a significant burden on the economy and healthcare around the world. Vaccines are the most effective tools to fight infectious diseases by containing the spread of the disease. The current vaccines against SARS-CoV-2 are mostly based on the spike protein of SARS-CoV-2, which is large and has many immune-dominant non-neutralizing epitopes that may effectively skew the antibody response towards non-neutralizing antibodies. Here, we have explored the possibility of immune-focusing the receptor binding motif (RBM) of the spike protein of SARS-CoV-2 that induces mostly neutralizing antibodies in natural infection or in vacinees. The result shows that the scaffolded RBM can bind to Angiotensin Converting Enzyme 2 (ACE2) although with low affinity and induces a strong antibody response in mice. The immunized sera can bind both, the receptor binding domain (RBD) and the spike protein, which holds the RBM in its natural context. Sera from the immunized mice showed robust interferon γ response but poor neutralization of SARS-CoV-2 suggesting presence of a predominant T cell epitope on scaffolded RBM. Together, we provide a strategy for inducing strong antigenic T cell response which could be exploited further for future vaccine designing and development against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Epitopes , Humans , Mice , Pandemics/prevention & control , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry
15.
Lancet Infect Dis ; 22(4): 473-482, 2022 04.
Article in English | MEDLINE | ID: covidwho-1757985

ABSTRACT

BACKGROUND: SARS-CoV-2 variants of concern (VOCs) have threatened COVID-19 vaccine effectiveness. We aimed to assess the effectiveness of the ChAdOx1 nCoV-19 vaccine, predominantly against the delta (B.1.617.2) variant, in addition to the cellular immune response to vaccination. METHODS: We did a test-negative, case-control study at two medical research centres in Faridabad, India. All individuals who had a positive RT-PCR test for SARS-CoV-2 infection between April 1, 2021, and May 31, 2021, were included as cases and individuals who had a negative RT-PCR test were included as controls after matching with cases on calendar week of RT-PCR test. The primary outcome was effectiveness of complete vaccination with the ChAdOx1 nCoV-19 vaccine against laboratory-confirmed SARS-CoV-2 infection. The secondary outcomes were effectiveness of a single dose against SARS-CoV-2 infection and effectiveness of a single dose and complete vaccination against moderate-to-severe disease among infected individuals. Additionally, we tested in-vitro live-virus neutralisation and T-cell immune responses to the spike protein of the wild-type SARS-CoV-2 and VOCs among healthy (anti-nucleocapsid antibody negative) recipients of the ChAdOx1 nCoV-19 vaccine. FINDINGS: Of 2379 cases of confirmed SARS-CoV-2 infection, 85 (3·6%) were fully vaccinated compared with 168 (8·5%) of 1981 controls (adjusted OR [aOR] 0·37 [95% CI 0·28-0·48]), giving a vaccine effectiveness against SARS-CoV-2 infection of 63·1% (95% CI 51·5-72·1). 157 (6·4%) of 2451 of cases and 181 (9·1%) of 1994) controls had received a single dose of the ChAdOx1 nCoV-19 vaccine (aOR 0·54 [95% CI 0·42-0·68]), thus vaccine effectiveness of a single dose against SARS-CoV-2 infection was 46·2% (95% CI 31·6-57·7). One of 84 cases with moderate-to-severe COVID-19 was fully vaccinated compared with 84 of 2295 cases with mild COVID-19 (aOR 0·19 [95% CI 0·01-0·90]), giving a vaccine effectiveness of complete vaccination against moderate-to-severe disease of 81·5% (95% CI 9·9-99·0). The effectiveness of a single dose against moderate-to-severe disease was 79·2% (95% CI 46·1-94·0); four of 87 individuals with moderate-to-severe COVID-19 had received a single dose compared with 153 of 2364 participants with mild disease (aOR 0·20 [95% CI 0·06-0·54]). Among 49 healthy, fully vaccinated individuals, neutralising antibody responses were lower against the alpha (B.1.1.7; geometric mean titre 244·7 [95% CI 151·8-394·4]), beta (B.1.351; 97·6 [61·2-155·8]), kappa (B.1.617.1; 112·8 [72·7-175·0]), and delta (88·4 [61·2-127·8]) variants than against wild-type SARS-CoV-2 (599·4 [376·9-953·2]). However, the antigen-specific CD4 and CD8 T-cell responses were conserved against both the delta variant and wild-type SARS-CoV-2. INTERPRETATION: The ChAdOx1 nCoV-19 vaccine remained effective against moderate-to-severe COVID-19, even during a surge that was dominated by the highly transmissible delta variant of SARS-CoV-2. Spike-specific T-cell responses were maintained against the delta variant. Such cellular immune protection might compensate for waning humoral immunity. FUNDING: Department of Biotechnology India, Council of Scientific and Industrial Research India, and Fondation Botnar.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibody Formation , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , ChAdOx1 nCoV-19 , Humans , Vaccination
17.
Front Pharmacol ; 12: 746729, 2021.
Article in English | MEDLINE | ID: covidwho-1497115

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection initiates with viral entry in the upper respiratory tract, leading to coronavirus disease 2019 (COVID-19). Severe COVID-19 is characterized by pulmonary pathologies associated with respiratory failure. Thus, therapeutics aimed at inhibiting the entry of the virus or its internalization in the upper respiratory tract are of interest. Herein, we report the prophylactic application of two intranasal formulations provided by the National Medicinal Plant Board (NMPB), Anu oil and til tailya, in the hamster model of SARS-CoV-2 infection. Prophylactic intra-nasal instillation of these oil formulations exhibited reduced viral load in lungs and resulted in reduced body weight loss and lung-pneumonitis. In line with reduced viral load, histopathological analysis revealed a reduction in lung pathology in the Anu oil group as compared to the control infected group. However, the til tailya group did not show a significant reduction in lung pathology. Furthermore, molecular analysis using mRNA expression profiling indicated reduced expression of pro-inflammatory cytokine genes, including Th1 and Th17 cytokines for both the intranasal formulations as a result of decreased viral load. Together, the prophylactic intranasal application of Anu oil seems to be useful in limiting both viral load and severity in SARS-CoV2 infection in the hamster model.

18.
Front Immunol ; 12: 641447, 2021.
Article in English | MEDLINE | ID: covidwho-1264330

ABSTRACT

The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , Immunity, Humoral/drug effects , Immunogenicity, Vaccine , Peptide Fragments/administration & dosage , Spike Glycoprotein, Coronavirus/administration & dosage , Th1 Cells/drug effects , Adjuvants, Immunologic/administration & dosage , Animals , Biomarkers/blood , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Drug Stability , Glycosylation , HEK293 Cells , Humans , Immunization , Interferon-gamma/blood , Male , Mice, Inbred C57BL , Peptide Fragments/immunology , Protein Interaction Domains and Motifs , Protein Stability , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Th1 Cells/metabolism , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vero Cells
19.
Microbes Infect ; 23(4-5): 104843, 2021.
Article in English | MEDLINE | ID: covidwho-1258465

ABSTRACT

COVID-19 pandemic has caused severe disruption of global health and devastated the socio-economic conditions all over the world. The disease is caused by SARS-CoV-2 virus that belongs to the family of Coronaviruses which are known to cause a wide spectrum of diseases both in humans and animals. One of the characteristic features of the SARS-CoV-2 virus is the high reproductive rate (R0) that results in high transmissibility of the virus among humans. Vaccines are the best option to prevent and control this disease. Though, the traditional intramuscular (IM) route of vaccine administration is one of the effective methods for induction of antibody response, a needle-free self-administrative intradermal (ID) immunization will be easier for SARS-CoV-2 infection containment, as vaccine administration method will limit human contacts. Here, we have assessed the humoral and cellular responses of a RBD-based peptide immunogen when administered intradermally in BALB/c mice and side-by-side compared with the intramuscular immunization route. The results demonstrate that ID vaccination is well tolerated and triggered a significant magnitude of humoral antibody responses as similar to IM vaccination. Additionally, the ID immunization resulted in higher production of IFN-γ and IL-2 suggesting superior cellular response as compared to IM route. Overall, our data indicates immunization through ID route provides a promising alternative approach for the development of self-administrative SARS-CoV-2 vaccine candidates.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Vaccination/methods , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation , Female , Immunity, Cellular , Immunity, Humoral , Injections, Intradermal , Injections, Intramuscular , Male , Mice, Inbred BALB C , Spike Glycoprotein, Coronavirus/immunology
20.
Front Immunol ; 12: 613045, 2021.
Article in English | MEDLINE | ID: covidwho-1177974

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initiates infection by attachment of the surface-exposed spike glycoprotein to the host cell receptors. The spike glycoprotein (S) is a promising target for inducing immune responses and providing protection; thus the ongoing efforts for the SARS-CoV-2 vaccine and therapeutic developments are mostly spiraling around S glycoprotein. The matured functional spike glycoprotein is presented on the virion surface as trimers, which contain two subunits, such as S1 (virus attachment) and S2 (virus fusion). The S1 subunit harbors the N-terminal domain (NTD) and the receptor-binding domain (RBD). The RBD is responsible for binding to host-cellular receptor angiotensin-converting enzyme 2 (ACE2). The NTD and RBD of S1, and the S2 of S glycoprotein are the major structural moieties to design and develop spike-based vaccine candidates and therapeutics. Here, we have identified three novel epitopes (20-amino acid peptides) in the regions NTD, RBD, and S2 domains, respectively, by structural and immunoinformatic analysis. We have shown as a proof of principle in the murine model, the potential role of these novel epitopes in-inducing humoral and cellular immune responses. Further analysis has shown that RBD and S2 directed epitopes were able to efficiently inhibit the replication of SARS-CoV-2 wild-type virus in vitro suggesting their role as virus entry inhibitors. Structural analysis revealed that S2-epitope is a part of the heptad repeat 2 (HR2) domain which might have plausible inhibitory effects on virus fusion. Taken together, this study discovered novel epitopes that might have important implications in the development of potential SARS-CoV-2 spike-based vaccine and therapeutics.


Subject(s)
Epitopes/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Virus Replication/immunology , Animals , COVID-19 Vaccines/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Protein Domains , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL