Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2201.12168v1


In pathology and legal medicine, the histopathological and microbiological analysis of tissue samples from infected deceased is a valuable information for developing treatment strategies during a pandemic such as COVID-19. However, a conventional autopsy carries the risk of disease transmission and may be rejected by relatives. We propose minimally invasive biopsy with robot assistance under CT guidance to minimize the risk of disease transmission during tissue sampling and to improve accuracy. A flexible robotic system for biopsy sampling is presented, which is applied to human corpses placed inside protective body bags. An automatic planning and decision system estimates optimal insertion point. Heat maps projected onto the segmented skin visualize the distance and angle of insertions and estimate the minimum cost of a puncture while avoiding bone collisions. Further, we test multiple insertion paths concerning feasibility and collisions. A custom end effector is designed for inserting needles and extracting tissue samples under robotic guidance. Our robotic post-mortem biopsy (RPMB) system is evaluated in a study during the COVID-19 pandemic on 20 corpses and 10 tissue targets, 5 of them being infected with SARS-CoV-2. The mean planning time including robot path planning is (5.72+-1.67) s. Mean needle placement accuracy is (7.19+-4.22) mm.

medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.12.21260357


Confronted with an emerging infectious disease, the medical community faced relevant concerns regarding the performance of autopsies of COVID-19 deceased at the beginning of the pandemic. This attitude has changed, and autopsies are now recognized as indispensable tools for elucidating COVID-19; despite this, the true risk of infection for autopsy staff is still debated. To elucidate the rate of SARS-CoV-2 contamination in personal protective equipment (PPE), swabs were taken at nine locations of the PPE of one physician and an assistant each from 11 full autopsies performed at four different centers. Further samples were obtained for three minimally invasive autopsies (MIA) conducted at a fifth center. Lung/bronchus swabs of the deceased served as positive controls. SARS-CoV-2 RNA was detected by RT-qPCR. In 9/11 full autopsies PPE samples were tested RNA positive with PCR, in total 21% of all PPE samples taken. The main contaminated parts of the PPE were the gloves (64% positive), the aprons (50% positive), and the upper sides of shoes (36% positive) while for example the fronts of safety goggles were only positive in 4.5% of the samples and all face masks were negative. In MIA, viral RNA was observed in one sample from a glove, but not in other swabs. Infectious virus isolation in cell culture was performed in RNA positive swabs from full autopsies. Of all RNA positive PPE samples, 21% of the glove samples were positive for infectious virus taken in 3/11 full autopsies. In conclusion, in >80% of autopsies, PPE was contaminated with viral RNA. In >25% of autopsies, PPE was found to be even contaminated with infectious virus, signifying a potential risk of infection among autopsy staff. Adequate PPE and hygiene measures, including appropriate waste deposition, are therefore mandatory to enable safe work environment.

researchsquare; 2021.


BackgroundCoronavirus disease 19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic with significant mortality. Accurate information on the specific circumstances of death and whether patients died from or with SARS-CoV-2 is scarce.MethodsTo distinguish COVID-19 from non-COVID-19 deaths, we performed a systematic review of 735 SARS-CoV-2-associated deaths in Hamburg, Germany, from March to December 2020, using conventional autopsy, ultrasound-guided minimally invasive autopsy, postmortem computed tomography and medical records. Statistical analyses including multiple logistic regression were used to compare both cohorts.Findings84.1% (n=618) were classified as COVID-19 deaths, 6.4% (n=47) as non-COVID-19 deaths, 9.5% (n=70) remained unclear. Median age of COVID-19 deaths was 83.0 years, 54.4% were male. In the autopsy group (n=283), the majority died of pneumonia and/or diffuse alveolar damage (73.6%; n=187). Thromboses were found in 39.2% (n=62/158 cases), pulmonary embolism in 22.1% (n=56/253 cases). In 2020, annual mortality in Hamburg was about 5.5% higher than in the previous 20 years, of which 3.4% (n=618) represented COVID-19 deaths.InterpretationOur study highlights the need for mortality surveillance and postmortem examinations. The vast majority of individuals who died directly from SARS-CoV-2 infection were of advanced age and had multiple comorbidities.

Adenocarcinoma, Bronchiolo-Alveolar , COVID-19 , Death , Pneumonia , Coronavirus Infections , Pulmonary Embolism