ABSTRACT
Due to the adverse effects of obesity on host immunity, this study investigated the effectiveness of COVID-19 vaccines (BNT162b2, ChAdOx-nCov-2019, and mRNA-1273) in inducing anti-SARS-CoV-2 Spike (S) neutralizing antibodies among individuals with various obesity classes (class I, II, III, and super obesity). Sera from vaccinated obese individuals (n = 73) and normal BMI controls (n = 46) were subjected to S-based enzyme-linked immunosorbent assay (ELISA) and serum-neutralization test (SNT) to determine the prevalence and titer of anti-SARS-CoV-2 neutralizing antibodies. Nucleocapsid-ELISA was also utilized to distinguish between immunity acquired via vaccination only versus vaccination plus recovery from infection. Data were linked to participant demographics including age, gender, past COVID-19 diagnosis, and COVID-19 vaccination profile. S-based ELISA demonstrated high seroprevalence rates (>97%) in the study and control groups whether samples with evidence of past infection were included or excluded. Interestingly, however, SNT demonstrated a slightly significant reduction in both the rate and titer of anti-SARS-CoV-2 neutralizing antibodies among vaccinated obese individuals (60/73; 82.19%) compared to controls (45/46; 97.83%). The observed reduction in COVID-19 vaccine-induced neutralizing humoral immunity among obese individuals occurs independently of gender, recovery from past infection, and period from last vaccination. Our data suggest that COVID-19 vaccines are highly effective in inducing protective humoral immunity. This effectiveness, however, is potentially reduced among obese individuals which highlight the importance of booster doses to improve their neutralizing immunity. Further investigations on larger sample size remain necessary to comprehensively conclude about the effect of obesity on COVID-19 vaccine effectiveness on humoral immunity induction.
ABSTRACT
Iron is a crucial micronutrient for immunity induction in response to infections and vaccinations. This study aimed to investigate the effect of iron deficiency on COVID-19-vaccine-induced humoral immunity. We investigated the effectiveness of COVID-19 vaccines (BNT162b2, mRNA-1273, and ChAdOx nCov-2019) in iron-deficient individuals (n = 63) and provide a side-by-side comparison to healthy controls (n = 67). The presence of anti-SARS-CoV-2 spike (S) and anti-nucleocapsid (NP) IgG were assessed using in-house S- and NP-based ELISA followed by serum neutralization test (SNT). High concordance between S-based ELISA and SNT results was observed. The prevalence of neutralizing antibodies was 95.24% (60/63) in the study group and 95.52% (64/67) in the controls with no significant difference. The presence/absence of past infection, period since vaccination, vaccine type, and being iron-deficient or having iron-deficiency anemia did not exert any significant effect on the prevalence or titer of anti-SARS-CoV-2 neutralizing antibodies. NP-based ELISA identified individuals unaware of exposure to SARS-CoV-2. Moreover, absence of anti-NP IgG was noted in participants who were previously diagnosed with COVID-19 suggesting the unpredictability of after-infection immunity. To sum up, this study demonstrated an initial lack of evidence on the association between iron deficiency and the effectiveness of COVID-19-vaccine-induced neutralizing humoral immunity. Similar studies with larger sample size remain necessary to obtain comprehensive conclusions about the effect or lack of effect of iron on COVID-19-vaccine effectiveness.
ABSTRACT
Middle East respiratory syndrome coronavirus (MERS-CoV) is caused by a well-known coronavirus first identified in a hospitalized patient in the Kingdom of Saudi Arabia. MERS-CoV is a serious pathogen affecting both human and camel health globally, with camels being known carriers of viruses that spread to humans. In this work, MERS-CoV genomic sequences were retrieved and analyzed by multiple sequence alignment to design and predict siRNAs with online software. The siRNAs were designed from the orf1ab region of the virus genome because of its high sequence conservation and vital role in virus replication. The designed siRNAs were used for experimental evaluation in selected cell lines: Vero cells, HEK-293-T, and Huh-7. Virus inhibition was assessed according to the cycle threshold value during a quantitative real-time polymerase chain reaction. Out of 462 potential siRNAs, we filtered out 21 based on specific selection criteria without off-target effect. The selected siRNAs did not show any cellular toxicity in the tested cell lines at various concentrations. Based on our results, it was obvious that the combined use of siRNAs exhibited a reduction in MERS-CoV replication in the Vero, HEK-293-T, and Huh-7 cell lines, with the highest efficacy displayed in the Vero cells.
ABSTRACT
A therapy for COVID-19 (Coronavirus Disease 19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) remains elusive due to the lack of an effective antiviral therapeutic molecule. The SARS-CoV-2 main protease (Mpro), which plays a vital role in the viral life cycle, is one of the most studied and validated drug targets. In Several prior studies, numerous possible chemical entities were proposed as potential Mpro inhibitors; however, most failed at various stages of drug discovery. Repositioning of existing antiviral compounds accelerates the discovery and development of potent therapeutic molecules. Hence, this study examines the applicability of anti-dengue compounds against the substrate binding site of Mpro for disrupting its polyprotein processing mechanism. An in-silico structure-based virtual screening approach is applied to screen 330 experimentally validated anti-dengue compounds to determine their affinity to the substrate binding site of Mpro. This study identified the top five compounds (CHEMBL1940602, CHEMBL2036486, CHEMBL3628485, CHEMBL200972, CHEMBL2036488) that showed a high affinity to Mpro with a docking score > -10.0 kcal/mol. The best-docked pose of these compounds with Mpro was subjected to 100 ns molecular dynamic (MD) simulation followed by MM/GBSA binding energy. This showed the maximum stability and comparable ΔG binding energy against the reference compound (X77 inhibitor). Overall, we repurposed the reported anti-dengue compounds against SARS-CoV-2-Mpro to impede its polyprotein processing for inhibiting SARS-CoV-2 infection.
Subject(s)
SARS-CoV-2 , Humans , Drug Repositioning , Polyproteins , Viral Nonstructural Proteins/metabolism , Cysteine Endopeptidases/metabolism , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Molecular Docking SimulationABSTRACT
PURPOSE OF REVIEW: Mass gathering (MG) religious events provide ideal conditions for transmission and globalization of respiratory tract infections (RTIs). We review recent literature on COVID-19 and other RTIs at recurring international annual MG religious and sporting events. RECENT FINDINGS: Due to the COVID-19 pandemic organizers of MG religious and sporting events introduced risk-based infection control measures that limited transmission of RTIs. The 2020 and 2021 Hajj were conducted with limited numbers of pilgrims compared to the annual millions of pilgrims. The Tokyo 2020 Olympic and Paralympic Games were cancelled and held in 2021. The success of the COVID-19 countermeasures at the 2021 Hajj and 2021 Tokyo Olympics was based on implementing good public health and social measures alongside a comprehensive testing strategy. SUMMARY: MG events are associated with transmission of a range of bacterial and viral RTIs. Introducing risk based a multitude of public health interventions can reduce transmission of SARS-CoV-2 and other RTIs.
Subject(s)
COVID-19 , Respiratory Tract Infections , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Islam , Mass Gatherings , Pandemics/prevention & control , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , SARS-CoV-2 , TravelABSTRACT
Safe, passive immunization methods are required against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants. Immunization of chickens with antigen is known to induce specific IgY antibodies concentrated in the egg yolk and has a good safety profile, high yield of IgY per egg, can be topically applied, not requiring parenteral delivery. Our data provide the first evidence of the prophylactic efficacy of Immunoglobulin Y antibodies against SARS-CoV-2 in mice. Lohmann hens were injected with recombinant SARS-CoV-2 RBD protein; IgY-Abs were extracted from the eggs and characterized using SDS-PAGE. Antiviral activity was evaluated using plaque reduction neutralization tests. In additional experiments, IgY-RBD efficacy was examined in mice sensitized to SARS-CoV-2 infection by transduction with Ad5-hACE2 (mild disease) or by using mouse-adapted virus (severe disease). In both cases, prophylactic intranasal administration of IgY-Abs reduced SARS-CoV-2 replication, and reduced morbidity, inflammatory cell infiltration, hemorrhage, and edema in the lungs and increased survival compared to control groups that received non-specific IgY-Abs. These results indicate that further evaluation of IgY-RBD antibodies in humans is warranted.
Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Antiviral Agents , COVID-19/prevention & control , Chickens , Female , Humans , Immunoglobulins , MiceABSTRACT
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently spreading worldwide. The pandemic has already had significant adverse effects on human civilization, the environment, and the ecosystem at national and global levels. Moreover, the various sectors of the food production chain, particularly agriculture and livestock, have also been significantly affected in terms of production sustainability and economic losses. The global pandemic has already resulted in a sharp drop in meat, milk, and egg production. Restrictions of movement at national and international levels, implemented as a part of control strategies by public health sectors, have negatively impacted business related to the supply of raw materials for livestock farmers and farm outputs, veterinary services, farmworkers, and animal welfare. This review highlights the significant impacts of COVID-19 on the sustainability of livestock performance, welfare on a global scale, and strategies for mitigating these adverse effects.
Subject(s)
COVID-19 , Livestock , Animal Welfare , Animals , COVID-19/epidemiology , COVID-19/veterinary , Ecosystem , Humans , SARS-CoV-2ABSTRACT
COVID-19 pandemic influenced the environment, animal health, and food security. Due to reduced human mobility, the air and water quality increased. Other environmental consequences were the personal protective types of equipment and their haphazard disposal. Atmospheric pollution could be a cofactor leading to an increased COVID-19 mortality rate. Lockdown, however, caused a reduction in air and water pollution. Noise pollution affects the health of individuals and communities in terms of cardiovascular disorders and sleeping problems. Meanwhile, the COVID-19 lockdown controls human activities that reduce noise pollution. Municipal waste affects the environment. Recycling has been reduced in some countries but not in Saudi Arabia. COVID-19 had a drastic effect on livestock production on national, regional, and global levels, affecting countries' capacities to prevent and control diseases of animals and increasing global poverty, becoming a threat to the sustainability of global food security and safety. Many lessons have been learned from the COVID-19 pandemic, so it is wise to study and analyze the previous lessons and shed some light on past pandemics such as the Spanish flu to understand the readings and earn experiences. This paper is focused on the interaction between the pandemic and environmental health from the public health concern rather than other health classifications.
Subject(s)
Air Pollution , COVID-19 , Influenza Pandemic, 1918-1919 , Air Pollution/analysis , Animals , Communicable Disease Control , Food Security , History, 20th Century , Humans , Pandemics , SARS-CoV-2ABSTRACT
The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that can transmit from dromedary camels to humans, causing severe pneumonia, with a 35% mortality rate. Vaccine candidates have been developed and tested in mice, camels, and humans. Previously, we developed a vaccine based on the modified vaccinia virus Ankara (MVA) viral vector, encoding a full-length spike protein of MERS-CoV, MVA-MERS. Here, we report the immunogenicity of high-dose MVA-MERS in prime-boost vaccinations in mice and camels. METHODS: Three groups of mice were immunised with MVA wild-type (MVA-wt) and MVA-MERS (MVA-wt/MVA-MERS), MVA-MERS/MVA-wt, or MVA-MERS/MVA-MERS. Camels were immunised with two doses of PBS, MVA-wt, or MVA-MERS. Antibody (Ab) responses were evaluated using ELISA and MERS pseudovirus neutralisation assays. RESULTS: Two high doses of MVA-MERS induced strong Ab responses in both mice and camels, including neutralising antibodies. Anti-MVA Ab responses did not affect the immune responses to the vaccine antigen (MERS-CoV spike). CONCLUSIONS: MVA-MERS vaccine, administered in a homologous prime-boost regimen, induced high levels of neutralising anti-MERS-CoV antibodies in mice and camels. This could be considered for further development and evaluation as a dromedary vaccine to reduce MERS-CoV transmission to humans.
ABSTRACT
BACKGROUND: Rheumatic diseases patients receiving Rituximab had severe COVID-19 disease. Although they had impaired humoral immune responses following COVID-19 vaccine, they had preserved cellular immune responses. Waning of COVID-19 antibody responses was observed within six months post vaccination among immunocompromised patients. Recent reports showed fatal outcome of breakthrough SARS-CoV-2 infections among vaccinated high-risk rheumatic diseases patients receiving Rituximab. SAR-CoV-2 serological tests were not performed. OBJECTIVE: Evaluation of COVID-19 vaccine humoral responses and breakthrough infections among low risk fully vaccinated rheumatic patients during the Delta Variant Era. METHODS: A case series of 19 fully vaccinated patients with rheumatic diseases were followed to determine post vaccine SARS-CoV-2 neutralizing antibody titers and to monitor the development of breakthrough infections up to eight months post vaccine at our tertiary care center in Jeddah, Saudi Arabia from 1st April until 30th November 2021. RESULTS: The mean age of patients was 49 years old. 10% of patients were receiving Rituximab. 73% of patients had positive SARS-CoV-2 serological testing post second vaccine. Two mild breakthrough COVID-19 infections were diagnosed six months post second dose of vaccine. Patients were less than 65 years, did not receive Rituximab, did not have interstitial lung diseases and had positive post vaccine serological testing. CONCLUSIONS: We demonstrated high SARS-CoV-2 neutralizing antibodies seroprevalence and self-limiting breakthrough infections in low risk rheumatic diseases patients during the Delta Era. Future studies are needed to study the outcome of rheumatic diseases patients in the Era of Omicron in view of viral immune escape responses.
ABSTRACT
Background: The global pandemic coronavirus SARS-CoV-2 has a healthcare, social and economic burden. To limit the spread of the virus, the World Health Organization (WHO) urgently called for extensive screening of suspected individuals; thus, a quick, simple, and sensitive diagnostic assay is always in need. Methods: We applied reverse transcription-loop-mediated isothermal amplification (RT-LAMP) for the detection of SARS-CoV-2. The RT-LAMP method was optimized by evaluating two fluorescence amplification mixes and several reaction times, and results were compared to the standard real-time RT-PCR (rtRT-PCR). The assay was validated using 200 nasopharyngeal swabs collected in viral transport media (62 positive for SARS-CoV-2, and 138 negative for SARS-CoV-2 detected by the rtRT-PCR method). The samples were diluted 1:4 in diethylpyrocarbonate (DEPC)-treated water, utilized for RT-LAMP using different singleplex and multiplex sets of LAMP primers (N gene, S gene, and orf1ab gene), and incubated at 65 °C using real-time PCR 7500. Results: Our direct detection with the RT-LAMP protocol showed 100% concordance (sensitivity and specificity) with the standard protocol used for the detection of SARS-CoV-2 nucleic acid. Conclusions: In this study, we set up a rapid, simple, and sensitive RT-LAMP assay for the detection of SARS-CoV-2 in clinical samples. The assay is suitable for point of care detection in public hospitals, medical centers in rural areas, and in transportation hubs.
ABSTRACT
In the era of SARS-CoV-2 variants and COVID-19 vaccination, the duration of infectious viral shedding and isolation in post vaccine breakthrough infections is challenging and depends on disease severity. The current study described a case of SARS-CoV-2 Delta variant pneumonia requiring hospitalization. The patient received two doses of BNT162b2 COVID-19 vaccines, and he had positive SARS-CoV-2 viral cultures 12 days post symptom onset. The time between the second dose of vaccine and the breakthrough infection was 6 months. While immunosuppression is a known risk factor for prolonged infectious viral shedding, age and time between vaccination and breakthrough infection are important risk factors that warrant further studies.
ABSTRACT
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a more severe strain of coronavirus (CoV) that was first emerged in China in 2019. Available antiviral drugs could be repurposed and natural compounds with antiviral activity could be safer and cheaper source of medicine for SARS-CoV-2. 78 natural antiviral compounds database was identified from literature and virtual screening technique was applied to identify potential 3-chymotrypsin-like protease (3CLpro) inhibitors. Molecular docking studies were conducted to analyze the main protease (3CLpro) and inhibitors interactions with key residues of active site of target protein (PDB ID: 6LU7), active site constitute the part of active domain I and II of 3CLpro. 10 compounds with highest dock score were subjected to calculate ADMET parameters to figure out drug-likeness. Molecular dynamic (MD) simulation of the selected lead was performed by Amber simulation package to understand the conformational changes in docked complex. MD simulations analysis (RMSD, RMSF, Rg, BF, HBs, and SASA plots) of lead bounded with 3CLpro, hence revealed the important structural turns and twists during MD simulations from 0 to 100 ns. MM-PBSA/GBSA methods has also been applied for the estimation binding free energy (BFE) of the selected lead-complex. The present study has identified lead compound "Forsythoside A" an active extract of Forsythia suspense as SARS-CoV-2 3CLpro inhibitor that can block the viral replication and translation. Structural analysis of target protein and lead compound performed in this study could contribute to the development of potential drug against SARS-CoV-2 infection.
ABSTRACT
Camels gained attention since the discovery of MERS-CoV as intermediary hosts for potentially epidemic zoonotic viruses. DcHEV is a novel zoonotic pathogen associated with camel contact. This study aimed to genetically characterize DcHEV in domestic and imported camels in Saudi Arabia. DcHEV was detected by RT-PCR in serum samples, PCR-positive samples were subjected to sequencing and phylogenetic analyses. DcHEV was detected in 1.77% of samples with higher positivity in domestic DCs. All positive imported dromedaries were from Sudan with age declining prevalence. Domestic DcHEV sequences clustered with sequences from Kenya, Somalia, and UAE while imported sequences clustered with one DcHEV isolate from UAE and both sequences clustered away from isolates reported from Pakistan. Full-genome sequences showed 24 amino acid difference with reference sequences. Our results confirm the detection of DcHEV in domestic and imported DCs. Further investigations are needed in human and camel populations to identify DcHEV potential zoonosis threat.
Subject(s)
Coronavirus Infections , Hepatitis E virus , Animals , Camelus , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Genetic Variation , Hepatitis E virus/genetics , Phylogeny , Saudi Arabia/epidemiologyABSTRACT
The past two decades have witnessed the emergence of three zoonotic coronaviruses which have jumped species to cause lethal disease in humans: severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. MERS-CoV emerged in Saudi Arabia in 2012 and the origins of MERS-CoV are not fully understood. Genomic analysis indicates it originated in bats and transmitted to camels. Human-to-human transmission occurs in varying frequency, being highest in healthcare environment and to a lesser degree in the community and among family members. Several nosocomial outbreaks of human-to-human transmission have occurred, the largest in Riyadh and Jeddah in 2014 and South Korea in 2015. MERS-CoV remains a high-threat pathogen identified by World Health Organization as a priority pathogen because it causes severe disease that has a high mortality rate, epidemic potential, and no medical countermeasures. MERS-CoV has been identified in dromedaries in several countries in the Middle East, Africa, and South Asia. MERS-CoV-2 causes a wide range of clinical presentations, although the respiratory system is predominantly affected. There are no specific antiviral treatments, although recent trials indicate that combination antivirals may be useful in severely ill patients. Diagnosing MERS-CoV early and implementation infection control measures are critical to preventing hospital-associated outbreaks. Preventing MERS relies on avoiding unpasteurized or uncooked animal products, practicing safe hygiene habits in health care settings and around dromedaries, community education and awareness training for health workers, as well as implementing effective control measures. Effective vaccines for MERS-COV are urgently needed but still under development.
Subject(s)
Middle East Respiratory Syndrome Coronavirus , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , Camelus/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disease Outbreaks/prevention & control , Humans , Infection Control/methods , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/pathogenicityABSTRACT
In this paper, a compartmental mathematical model has been utilized to gain a better insight about the future dynamics of COVID-19. The total human population is divided into eight various compartments including susceptible, exposed, pre-asymptomatic, asymptomatic, symptomatic, quarantined, hospitalized and recovered or removed individuals. The problem was modeled in terms of highly nonlinear coupled system of classical order ordinary differential equations (ODEs) which was further generalized with the Atangana-Balaeanu (ABC) fractional derivative in Caputo sense with nonlocal kernel. Furthermore, some theoretical analyses have been done such as boundedness, positivity, existence and uniqueness of the considered. Disease-free and endemic equilibrium points were also assessed. The basic reproduction was calculated through next generation technique. Due to high risk of infection, in the present study, we have considered the reported cases from three continents namely Americas, Europe, and south-east Asia. The reported cases were considered between 1st May 2021 and 31st July 2021 and on the basis of this data, the spread of infection is predicted for the next 200 days. The graphical solution of the considered nonlinear fractional model was obtained via numerical scheme by implementing the MATLAB software. Based on the fitted values of parameters, the basic reproduction number â0 for the case of America, Asia and Europe were calculated as â0≈2.92819, â0≈2.87970 and â0≈2.23507 respectively. It is also observed that the spread of infection in America is comparatively high followed by Asia and Europe. Moreover, the effect of fractional parameter is shown on the dynamics of spread of infection among different classes. Additionally, the effect of quarantined and treatment of infected individuals is also shown graphically. From the present analysis it is observed that awareness of being quarantine and proper treatment can reduce the infection rate dramatically and a minimal variation in quarantine and treatment rates of infected individuals can lead us to decrease the rate of infection.