Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Front Cell Infect Microbiol ; 12: 804175, 2022.
Article in English | MEDLINE | ID: covidwho-1902926

ABSTRACT

Immunocompromised adults can have prolonged acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive RT-PCR results, long after the initial diagnosis of coronavirus disease 2019 (COVID-19). This study aimed to determine if SARS-CoV-2 virus can be recovered in viral cell culture from immunocompromised adults with persistently positive SARS-CoV-2 RT-PCR tests. We obtained 20 remnant SARS-CoV-2 PCR positive nasopharyngeal swabs from 20 immunocompromised adults with a positive RT-PCR test ≥14 days after the initial positive test. The patients' 2nd test samples underwent SARS-CoV-2 antigen testing, and culture with Vero-hACE2-TMPRSS2 cells. Viral RNA and cultivable virus were recovered from the cultured cells after qRT-PCR and plaque assays. Of 20 patients, 10 (50%) had a solid organ transplant and 5 (25%) had a hematologic malignancy. For most patients, RT-PCR Ct values increased over time. There were 2 patients with positive viral cell cultures; one patient had chronic lymphocytic leukemia treated with venetoclax and obinutuzumab who had a low viral titer of 27 PFU/mL. The second patient had marginal zone lymphoma treated with bendamustine and rituximab who had a high viral titer of 2 x 106 PFU/mL. Most samples collected ≥7 days after an initial positive SARS-CoV-2 RT-PCR had negative viral cell cultures. The 2 patients with positive viral cell cultures had hematologic malignancies treated with chemotherapy and B cell depleting therapy. One patient had a high concentration titer of cultivable virus. Further data are needed to determine risk factors for persistent viral shedding and methods to prevent SARS-CoV-2 transmission from immunocompromised hosts.


Subject(s)
COVID-19 , SARS-CoV-2 , Cell Culture Techniques , Humans , Immunocompromised Host , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction
2.
Clin Infect Dis ; 2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1890901

ABSTRACT

BACKGROUND: Adults in the United States (US) began receiving the viral vector COVID-19 vaccine, Ad26.COV2.S (Johnson & Johnson [Janssen]), in February 2021. We evaluated Ad26.COV2.S vaccine effectiveness (VE) against COVID-19 hospitalization and high disease severity during the first 10 months of its use. METHODS: In a multicenter case-control analysis of US adults (≥18 years) hospitalized March 11-December 15, 2021, we estimated VE against susceptibility to COVID-19 hospitalization (VEs), comparing odds of prior vaccination with a single dose Ad26.COV2.S vaccine between hospitalized cases with COVID-19 and controls without COVID-19. Among hospitalized patients with COVID-19, we estimated VE against disease progression (VEp) to death or invasive mechanical ventilation (IMV), comparing odds of prior vaccination between patients with and without progression. RESULTS: After excluding patients receiving mRNA vaccines, among 3,979 COVID-19 case-patients (5% vaccinated with Ad26.COV2.S) and 2.229 controls (13% vaccinated with Ad26.COV2.S), VEs of Ad26.COV2.S against COVID-19 hospitalization was 70% (95% CI: 63%-75%) overall, including 55% (29%-72%) among immunocompromised patients, and 72% (64%-77%) among immunocompetent patients, for whom VEs was similar at 14-90 days (73% [59%-82%]), 91-180 days (71% [60%-80%]), and 181-274 days (70% [54%-81%]) post-vaccination. Among hospitalized COVID-19 case-patients, VEp was 46% (18%-65%) among immunocompetent patients. CONCLUSIONS: The Ad26.COV2.S COVID-19 vaccine reduced the risk of COVID-19 hospitalization by 72% among immunocompetent adults without waning through 6 months post-vaccination. After hospitalization for COVID-19, vaccinated immunocompetent patients were less likely to require IMV or die compared to unvaccinated immunocompetent patients.

3.
J Infect Dis ; 2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1853098

ABSTRACT

BACKGROUND: The study objective was to evaluate 2 and 3 dose COVID-19 mRNA vaccine effectiveness (VE) in preventing COVID-19 hospitalization among adult solid organ transplant (SOT) recipients. METHODS: 21-site case-control analysis of 10,425 adults hospitalized March-December 2021. Cases were hospitalized with COVID-19; controls were hospitalized for an alternative diagnosis (SARS-CoV-2 negative). Participants were classified as: SOT recipient (n=440), other immunocompromising condition (n=1684), or immunocompetent (n=8301). VE against COVID-19 associated hospitalization was calculated as 1-adjusted odds ratio of prior vaccination among cases compared with controls. RESULTS: Among SOT recipients, VE was 29% (95% CI: -19 to 58%) for 2 doses and 77% (95% CI: 48 to 90%) for 3 doses. Among patients with other immunocompromising conditions, VE was 72% (95% CI: 64 to 79%) for 2 doses and 92% (95% CI: 85 to 95%) for 3 doses. Among immunocompetent patients, VE was 88% (95% CI: 87 to 90%) for 2 doses and 96% (95% CI: 83 to 99%) for 3 doses. CONCLUSION: Effectiveness of COVID-19 mRNA vaccines was lower for SOT recipients than immunocompetent people and those with other immunocompromising conditions. Among SOT recipients, vaccination with 3 doses of an mRNA vaccine led to substantially greater protection than 2 doses.

4.
Infect Control Hosp Epidemiol ; : 1-6, 2022 Apr 20.
Article in English | MEDLINE | ID: covidwho-1805485

ABSTRACT

OBJECTIVE: To determine the impact of various aerosol mitigation interventions and to establish duration of aerosol persistence in a variety of dental clinic configurations. METHODS: We performed aerosol measurement studies in endodontic, orthodontic, periodontic, pediatric, and general dentistry clinics. We used an optical aerosol spectrometer and wearable particulate matter sensors to measure real-time aerosol concentration from the vantage point of the dentist during routine care in a variety of clinic configurations (eg, open bay, single room, partitioned operatories). We compared the impact of aerosol mitigation strategies (eg, ventilation and high-volume evacuation (HVE), and prevalence of particulate matter) in the dental clinic environment before, during, and after high-speed drilling, slow-speed drilling, and ultrasonic scaling procedures. RESULTS: Conical and ISOVAC HVE were superior to standard-tip evacuation for aerosol-generating procedures. When aerosols were detected in the environment, they were rapidly dispersed within minutes of completing the aerosol-generating procedure. Few aerosols were detected in dental clinics, regardless of configuration, when conical and ISOVAC HVE were used. CONCLUSIONS: Dentists should consider using conical or ISOVAC HVE rather than standard-tip evacuators to reduce aerosols generated during routine clinical practice. Furthermore, when such effective aerosol mitigation strategies are employed, dentists need not leave dental chairs fallow between patients because aerosols are rapidly dispersed.

5.
MMWR Morb Mortal Wkly Rep ; 71(12): 459-465, 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1761302

ABSTRACT

COVID-19 mRNA vaccines (BNT162b2 [Pfizer-BioNTech] and mRNA-1273 [Moderna]) are effective at preventing COVID-19-associated hospitalization (1-3). However, how well mRNA vaccines protect against the most severe outcomes of these hospitalizations, including invasive mechanical ventilation (IMV) or death is uncertain. Using a case-control design, mRNA vaccine effectiveness (VE) against COVID-19-associated IMV and in-hospital death was evaluated among adults aged ≥18 years hospitalized at 21 U.S. medical centers during March 11, 2021-January 24, 2022. During this period, the most commonly circulating variants of SARS-CoV-2, the virus that causes COVID-19, were B.1.1.7 (Alpha), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Previous vaccination (2 or 3 versus 0 vaccine doses before illness onset) in prospectively enrolled COVID-19 case-patients who received IMV or died within 28 days of hospitalization was compared with that among hospitalized control patients without COVID-19. Among 1,440 COVID-19 case-patients who received IMV or died, 307 (21%) had received 2 or 3 vaccine doses before illness onset. Among 6,104 control-patients, 4,020 (66%) had received 2 or 3 vaccine doses. Among the 1,440 case-patients who received IMV or died, those who were vaccinated were older (median age = 69 years), more likely to be immunocompromised* (40%), and had more chronic medical conditions compared with unvaccinated case-patients (median age = 55 years; immunocompromised = 10%; p<0.001 for both). VE against IMV or in-hospital death was 90% (95% CI = 88%-91%) overall, including 88% (95% CI = 86%-90%) for 2 doses and 94% (95% CI = 91%-96%) for 3 doses, and 94% (95% CI = 88%-97%) for 3 doses during the Omicron-predominant period. COVID-19 mRNA vaccines are highly effective in preventing COVID-19-associated death and respiratory failure treated with IMV. CDC recommends that all persons eligible for vaccination get vaccinated and stay up to date with COVID-19 vaccination (4).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , Respiration, Artificial , Vaccine Efficacy , COVID-19/mortality , Hospital Mortality , Humans , United States/epidemiology
6.
BMJ ; 376: e069761, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1736045

ABSTRACT

OBJECTIVES: To characterize the clinical severity of covid-19 associated with the alpha, delta, and omicron SARS-CoV-2 variants among adults admitted to hospital and to compare the effectiveness of mRNA vaccines to prevent hospital admissions related to each variant. DESIGN: Case-control study. SETTING: 21 hospitals across the United States. PARTICIPANTS: 11 690 adults (≥18 years) admitted to hospital: 5728 with covid-19 (cases) and 5962 without covid-19 (controls). Patients were classified into SARS-CoV-2 variant groups based on viral whole genome sequencing, and, if sequencing did not reveal a lineage, by the predominant circulating variant at the time of hospital admission: alpha (11 March to 3 July 2021), delta (4 July to 25 December 2021), and omicron (26 December 2021 to 14 January 2022). MAIN OUTCOME MEASURES: Vaccine effectiveness calculated using a test negative design for mRNA vaccines to prevent covid-19 related hospital admissions by each variant (alpha, delta, omicron). Among patients admitted to hospital with covid-19, disease severity on the World Health Organization's clinical progression scale was compared among variants using proportional odds regression. RESULTS: Effectiveness of the mRNA vaccines to prevent covid-19 associated hospital admissions was 85% (95% confidence interval 82% to 88%) for two vaccine doses against the alpha variant, 85% (83% to 87%) for two doses against the delta variant, 94% (92% to 95%) for three doses against the delta variant, 65% (51% to 75%) for two doses against the omicron variant; and 86% (77% to 91%) for three doses against the omicron variant. In-hospital mortality was 7.6% (81/1060) for alpha, 12.2% (461/3788) for delta, and 7.1% (40/565) for omicron. Among unvaccinated patients with covid-19 admitted to hospital, severity on the WHO clinical progression scale was higher for the delta versus alpha variant (adjusted proportional odds ratio 1.28, 95% confidence interval 1.11 to 1.46), and lower for the omicron versus delta variant (0.61, 0.49 to 0.77). Compared with unvaccinated patients, severity was lower for vaccinated patients for each variant, including alpha (adjusted proportional odds ratio 0.33, 0.23 to 0.49), delta (0.44, 0.37 to 0.51), and omicron (0.61, 0.44 to 0.85). CONCLUSIONS: mRNA vaccines were found to be highly effective in preventing covid-19 associated hospital admissions related to the alpha, delta, and omicron variants, but three vaccine doses were required to achieve protection against omicron similar to the protection that two doses provided against the delta and alpha variants. Among adults admitted to hospital with covid-19, the omicron variant was associated with less severe disease than the delta variant but still resulted in substantial morbidity and mortality. Vaccinated patients admitted to hospital with covid-19 had significantly lower disease severity than unvaccinated patients for all the variants.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2 , Case-Control Studies , Hospitalization , Humans , Immunization Schedule , Prospective Studies , Severity of Illness Index , United States
7.
J Infect Dis ; 225(10): 1694-1700, 2022 05 16.
Article in English | MEDLINE | ID: covidwho-1704377

ABSTRACT

Vaccine effectiveness (VE) against COVID-19 hospitalization was evaluated among immunocompetent adults (≥18 years) during March-August 2021 using a case-control design. Among 1669 hospitalized COVID-19 cases (11% fully vaccinated) and 1950 RT-PCR-negative controls (54% fully vaccinated), VE was 96% (95% confidence interval [CI], 93%-98%) among patients with no chronic medical conditions and 83% (95% CI, 76%-88%) among patients with ≥ 3 categories of conditions. VE was similar between those aged 18-64 years versus ≥65 years (P > .05). VE against severe COVID-19 was very high among adults without chronic conditions and lessened with increasing comorbidity burden.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Chronic Disease , Hospitalization , Humans , Vaccines, Synthetic , mRNA Vaccines
8.
Infect Control Hosp Epidemiol ; : 1-6, 2022 Feb 22.
Article in English | MEDLINE | ID: covidwho-1700551

ABSTRACT

OBJECTIVE: Although a growing number of healthcare facilities are implementing healthcare personnel (HCP) coronavirus disease 2019 (COVID-19) vaccination requirements, vaccine exemption request management as a part of such programs is not well described. DESIGN: Cross-sectional survey. PARTICIPANTS: Infectious disease (ID) physician members of the Emerging Infections Network with infection prevention or hospital epidemiology responsibilities. METHODS: Eligible persons were sent a web-based survey focused on hospital plans and practices around exemption allowances from HCP COVID-19 vaccine requirements. RESULTS: Of the 695 ID physicians surveyed, 263 (38%) responded. Overall, 160 respondent institutions (92%) allowed medical exemptions, whereas 132 (76%) allowed religious exemptions. In contrast, only 14% (n = 24) allowed deeply held personal belief exemptions. The types of medical exemptions allowed varied considerably across facilities, with allergic reactions to the vaccine or its components accepted by 145 facilities (84%). For selected scenarios commonly used as the basis for religious and deeply held personal belief exemption requests, 144 institutions (83%) would not approve exemptions focused on concerns regarding right of consent or violations of freedom of personal choice, and 140 institutions (81%) would not approve exemptions focused on introducing foreign substances into one's body or the sanctity of the body. Most respondents noted plans for additional infection prevention interventions for HCP who received an exemption for COVID-19 vaccination. CONCLUSIONS: Although many respondent institutions allowed exemptions from HCP COVID-19 vaccination requirements, the types of exemptions allowed and how the exemption programs were structured varied widely.

9.
Clin Infect Dis ; 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1700456

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccination coverage increases in the United States (US), there is a need to understand the real-world effectiveness against severe Covid-19 and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11-May 5, 2021, we evaluated vaccine effectiveness to prevent Covid-19 hospitalizations by comparing odds of prior vaccination with an mRNA vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with Covid-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1212 participants, including 593 cases and 619 controls, median age was 58 years, 22.8% were Black, 13.9% were Hispanic, and 21.0% had immunosuppression. SARS-CoV-2 lineage B.1.1.7 (Alpha) was the most common variant (67.9% of viruses with lineage determined). Full vaccination (receipt of two vaccine doses ≥14 days before illness onset) had been received by 8.2% of cases and 36.4% of controls. Overall vaccine effectiveness was 87.1% (95% CI: 80.7 to 91.3%). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.4%; 95% CI: 79.3 to 99.7%). Among 45 patients with vaccine-breakthrough Covid hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (62.9%; 95% CI: 20.8 to 82.6%) than without immunosuppression (91.3%; 95% CI: 85.6 to 94.8%). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing Covid-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population.

10.
JAMA ; 326(20): 2043-2054, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1544165

ABSTRACT

Importance: A comprehensive understanding of the benefits of COVID-19 vaccination requires consideration of disease attenuation, determined as whether people who develop COVID-19 despite vaccination have lower disease severity than unvaccinated people. Objective: To evaluate the association between vaccination with mRNA COVID-19 vaccines-mRNA-1273 (Moderna) and BNT162b2 (Pfizer-BioNTech)-and COVID-19 hospitalization, and, among patients hospitalized with COVID-19, the association with progression to critical disease. Design, Setting, and Participants: A US 21-site case-control analysis of 4513 adults hospitalized between March 11 and August 15, 2021, with 28-day outcome data on death and mechanical ventilation available for patients enrolled through July 14, 2021. Date of final follow-up was August 8, 2021. Exposures: COVID-19 vaccination. Main Outcomes and Measures: Associations were evaluated between prior vaccination and (1) hospitalization for COVID-19, in which case patients were those hospitalized for COVID-19 and control patients were those hospitalized for an alternative diagnosis; and (2) disease progression among patients hospitalized for COVID-19, in which cases and controls were COVID-19 patients with and without progression to death or mechanical ventilation, respectively. Associations were measured with multivariable logistic regression. Results: Among 4513 patients (median age, 59 years [IQR, 45-69]; 2202 [48.8%] women; 23.0% non-Hispanic Black individuals, 15.9% Hispanic individuals, and 20.1% with an immunocompromising condition), 1983 were case patients with COVID-19 and 2530 were controls without COVID-19. Unvaccinated patients accounted for 84.2% (1669/1983) of COVID-19 hospitalizations. Hospitalization for COVID-19 was significantly associated with decreased likelihood of vaccination (cases, 15.8%; controls, 54.8%; adjusted OR, 0.15; 95% CI, 0.13-0.18), including for sequenced SARS-CoV-2 Alpha (8.7% vs 51.7%; aOR, 0.10; 95% CI, 0.06-0.16) and Delta variants (21.9% vs 61.8%; aOR, 0.14; 95% CI, 0.10-0.21). This association was stronger for immunocompetent patients (11.2% vs 53.5%; aOR, 0.10; 95% CI, 0.09-0.13) than immunocompromised patients (40.1% vs 58.8%; aOR, 0.49; 95% CI, 0.35-0.69) (P < .001) and weaker at more than 120 days since vaccination with BNT162b2 (5.8% vs 11.5%; aOR, 0.36; 95% CI, 0.27-0.49) than with mRNA-1273 (1.9% vs 8.3%; aOR, 0.15; 95% CI, 0.09-0.23) (P < .001). Among 1197 patients hospitalized with COVID-19, death or invasive mechanical ventilation by day 28 was associated with decreased likelihood of vaccination (12.0% vs 24.7%; aOR, 0.33; 95% CI, 0.19-0.58). Conclusions and Relevance: Vaccination with an mRNA COVID-19 vaccine was significantly less likely among patients with COVID-19 hospitalization and disease progression to death or mechanical ventilation. These findings are consistent with risk reduction among vaccine breakthrough infections compared with absence of vaccination.


Subject(s)
COVID-19 , Hospitalization/statistics & numerical data , Adult , Aged , COVID-19/classification , COVID-19/epidemiology , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/classification , Case-Control Studies , Disease Progression , Female , Humans , Male , Middle Aged , Respiration, Artificial , SARS-CoV-2 , Severity of Illness Index , Vaccination
11.
JAMA ; 326(20): 2043-2054, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1499190

ABSTRACT

Importance: A comprehensive understanding of the benefits of COVID-19 vaccination requires consideration of disease attenuation, determined as whether people who develop COVID-19 despite vaccination have lower disease severity than unvaccinated people. Objective: To evaluate the association between vaccination with mRNA COVID-19 vaccines-mRNA-1273 (Moderna) and BNT162b2 (Pfizer-BioNTech)-and COVID-19 hospitalization, and, among patients hospitalized with COVID-19, the association with progression to critical disease. Design, Setting, and Participants: A US 21-site case-control analysis of 4513 adults hospitalized between March 11 and August 15, 2021, with 28-day outcome data on death and mechanical ventilation available for patients enrolled through July 14, 2021. Date of final follow-up was August 8, 2021. Exposures: COVID-19 vaccination. Main Outcomes and Measures: Associations were evaluated between prior vaccination and (1) hospitalization for COVID-19, in which case patients were those hospitalized for COVID-19 and control patients were those hospitalized for an alternative diagnosis; and (2) disease progression among patients hospitalized for COVID-19, in which cases and controls were COVID-19 patients with and without progression to death or mechanical ventilation, respectively. Associations were measured with multivariable logistic regression. Results: Among 4513 patients (median age, 59 years [IQR, 45-69]; 2202 [48.8%] women; 23.0% non-Hispanic Black individuals, 15.9% Hispanic individuals, and 20.1% with an immunocompromising condition), 1983 were case patients with COVID-19 and 2530 were controls without COVID-19. Unvaccinated patients accounted for 84.2% (1669/1983) of COVID-19 hospitalizations. Hospitalization for COVID-19 was significantly associated with decreased likelihood of vaccination (cases, 15.8%; controls, 54.8%; adjusted OR, 0.15; 95% CI, 0.13-0.18), including for sequenced SARS-CoV-2 Alpha (8.7% vs 51.7%; aOR, 0.10; 95% CI, 0.06-0.16) and Delta variants (21.9% vs 61.8%; aOR, 0.14; 95% CI, 0.10-0.21). This association was stronger for immunocompetent patients (11.2% vs 53.5%; aOR, 0.10; 95% CI, 0.09-0.13) than immunocompromised patients (40.1% vs 58.8%; aOR, 0.49; 95% CI, 0.35-0.69) (P < .001) and weaker at more than 120 days since vaccination with BNT162b2 (5.8% vs 11.5%; aOR, 0.36; 95% CI, 0.27-0.49) than with mRNA-1273 (1.9% vs 8.3%; aOR, 0.15; 95% CI, 0.09-0.23) (P < .001). Among 1197 patients hospitalized with COVID-19, death or invasive mechanical ventilation by day 28 was associated with decreased likelihood of vaccination (12.0% vs 24.7%; aOR, 0.33; 95% CI, 0.19-0.58). Conclusions and Relevance: Vaccination with an mRNA COVID-19 vaccine was significantly less likely among patients with COVID-19 hospitalization and disease progression to death or mechanical ventilation. These findings are consistent with risk reduction among vaccine breakthrough infections compared with absence of vaccination.


Subject(s)
COVID-19 , Hospitalization/statistics & numerical data , Adult , Aged , COVID-19/classification , COVID-19/epidemiology , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/classification , Case-Control Studies , Disease Progression , Female , Humans , Male , Middle Aged , Respiration, Artificial , SARS-CoV-2 , Severity of Illness Index , Vaccination
13.
Infect Control Hosp Epidemiol ; : 1-3, 2021 Apr 19.
Article in English | MEDLINE | ID: covidwho-1442667

ABSTRACT

We surveyed infectious disease specialists about early coronavirus disease 2019 (COVID-19) vaccination preparedness. Almost all responding institutions rated their facility's preparedness plan as either excellent or adequate. Vaccine hesitancy and concern about adverse reactions were the most commonly anticipated barriers to COVID-19 vaccination. Only 60% believed that COVID-19 vaccination should be mandatory.

14.
MMWR Morb Mortal Wkly Rep ; 70(38): 1337-1343, 2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1436415

ABSTRACT

Three COVID-19 vaccines are authorized or approved for use among adults in the United States (1,2). Two 2-dose mRNA vaccines, mRNA-1273 from Moderna and BNT162b2 from Pfizer-BioNTech, received Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA) in December 2020 for persons aged ≥18 years and aged ≥16 years, respectively. A 1-dose viral vector vaccine (Ad26.COV2 from Janssen [Johnson & Johnson]) received EUA in February 2021 for persons aged ≥18 years (3). The Pfizer-BioNTech vaccine received FDA approval for persons aged ≥16 years on August 23, 2021 (4). Current guidelines from FDA and CDC recommend vaccination of eligible persons with one of these three products, without preference for any specific vaccine (4,5). To assess vaccine effectiveness (VE) of these three products in preventing COVID-19 hospitalization, CDC and collaborators conducted a case-control analysis among 3,689 adults aged ≥18 years who were hospitalized at 21 U.S. hospitals across 18 states during March 11-August 15, 2021. An additional analysis compared serum antibody levels (anti-spike immunoglobulin G [IgG] and anti-receptor binding domain [RBD] IgG) to SARS-CoV-2, the virus that causes COVID-19, among 100 healthy volunteers enrolled at three hospitals 2-6 weeks after full vaccination with the Moderna, Pfizer-BioNTech, or Janssen COVID-19 vaccine. Patients with immunocompromising conditions were excluded. VE against COVID-19 hospitalizations was higher for the Moderna vaccine (93%; 95% confidence interval [CI] = 91%-95%) than for the Pfizer-BioNTech vaccine (88%; 95% CI = 85%-91%) (p = 0.011); VE for both mRNA vaccines was higher than that for the Janssen vaccine (71%; 95% CI = 56%-81%) (all p<0.001). Protection for the Pfizer-BioNTech vaccine declined 4 months after vaccination. Postvaccination anti-spike IgG and anti-RBD IgG levels were significantly lower in persons vaccinated with the Janssen vaccine than the Moderna or Pfizer-BioNTech vaccines. Although these real-world data suggest some variation in levels of protection by vaccine, all FDA-approved or authorized COVID-19 vaccines provide substantial protection against COVID-19 hospitalization.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Immunocompromised Host/immunology , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , United States/epidemiology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult
15.
J Appl Lab Med ; 2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1398106

ABSTRACT

BACKGROUND: Saliva has garnered great interest as an alternative specimen type for molecular detection of SARS-CoV-2. Data are limited on the relative performance of different molecular methods using saliva specimens and the relative sensitivity of saliva to NP swabs. METHODS: To address the gap in knowledge, we enrolled symptomatic healthcare personnel (n = 250) from Barnes-Jewish Hospital/Washington University Medical Center and patients presenting to the Emergency Department with clinical symptoms compatible with COVID-19 (n = 292). We collected paired saliva specimens and NP swabs. The Lyra SARS-CoV-2 assay (Quidel, San Diego, CA) was evaluated on paired saliva and NP samples. Subsequently we compared the Simplexa COVID-19 Direct Kit (Diasorin, Cypress, CA) and a modified SalivaDirect (Yale) assay on a subset of positive and negative saliva specimens. RESULTS: The positive percent agreement between saliva and NP samples using the Lyra SARS-CoV-2 assay was 63.2%. Saliva samples had higher SARS-CoV-2 cycle threshold values compared to NP swabs (p < 0.0001). We found a 76.47% (26/34) positive percent agreement for Simplexa COVID-19 Direct Kit on saliva and a 67.6% (23/34) positive percent agreement for SalivaDirect compared to NP swab results. CONCLUSION: These data demonstrate molecular assays have variability in performance for detection of SARS-CoV-2 in saliva.

16.
MMWR Morb Mortal Wkly Rep ; 70(34): 1156-1162, 2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1374684

ABSTRACT

Real-world evaluations have demonstrated high effectiveness of vaccines against COVID-19-associated hospitalizations (1-4) measured shortly after vaccination; longer follow-up is needed to assess durability of protection. In an evaluation at 21 hospitals in 18 states, the duration of mRNA vaccine (Pfizer-BioNTech or Moderna) effectiveness (VE) against COVID-19-associated hospitalizations was assessed among adults aged ≥18 years. Among 3,089 hospitalized adults (including 1,194 COVID-19 case-patients and 1,895 non-COVID-19 control-patients), the median age was 59 years, 48.7% were female, and 21.1% had an immunocompromising condition. Overall, 141 (11.8%) case-patients and 988 (52.1%) controls were fully vaccinated (defined as receipt of the second dose of Pfizer-BioNTech or Moderna mRNA COVID-19 vaccines ≥14 days before illness onset), with a median interval of 65 days (range = 14-166 days) after receipt of second dose. VE against COVID-19-associated hospitalization during the full surveillance period was 86% (95% confidence interval [CI] = 82%-88%) overall and 90% (95% CI = 87%-92%) among adults without immunocompromising conditions. VE against COVID-19- associated hospitalization was 86% (95% CI = 82%-90%) 2-12 weeks and 84% (95% CI = 77%-90%) 13-24 weeks from receipt of the second vaccine dose, with no significant change between these periods (p = 0.854). Whole genome sequencing of 454 case-patient specimens found that 242 (53.3%) belonged to the B.1.1.7 (Alpha) lineage and 74 (16.3%) to the B.1.617.2 (Delta) lineage. Effectiveness of mRNA vaccines against COVID-19-associated hospitalization was sustained over a 24-week period, including among groups at higher risk for severe COVID-19; ongoing monitoring is needed as new SARS-CoV-2 variants emerge. To reduce their risk for hospitalization, all eligible persons should be offered COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , Time Factors , United States/epidemiology , Vaccines, Synthetic , Young Adult
17.
Infect Control Hosp Epidemiol ; 43(1): 3-11, 2022 01.
Article in English | MEDLINE | ID: covidwho-1366767

ABSTRACT

This consensus statement by the Society for Healthcare Epidemiology of America (SHEA) and the Society for Post-Acute and Long-Term Care Medicine (AMDA), the Association for Professionals in Epidemiology and Infection Control (APIC), the HIV Medicine Association (HIVMA), the Infectious Diseases Society of America (IDSA), the Pediatric Infectious Diseases Society (PIDS), and the Society of Infectious Diseases Pharmacists (SIDP) recommends that coronavirus disease 2019 (COVID-19) vaccination should be a condition of employment for all healthcare personnel in facilities in the United States. Exemptions from this policy apply to those with medical contraindications to all COVID-19 vaccines available in the United States and other exemptions as specified by federal or state law. The consensus statement also supports COVID-19 vaccination of nonemployees functioning at a healthcare facility (eg, students, contract workers, volunteers, etc).


Subject(s)
COVID-19 , COVID-19 Vaccines , Child , Delivery of Health Care , Employment , Humans , SARS-CoV-2 , United States/epidemiology , Vaccination
18.
Clin Infect Dis ; 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1345719

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccination coverage increases in the United States (US), there is a need to understand the real-world effectiveness against severe Covid-19 and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11-May 5, 2021, we evaluated vaccine effectiveness to prevent Covid-19 hospitalizations by comparing odds of prior vaccination with an mRNA vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with Covid-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1212 participants, including 593 cases and 619 controls, median age was 58 years, 22.8% were Black, 13.9% were Hispanic, and 21.0% had immunosuppression. SARS-CoV-2 lineage B.1.1.7 (Alpha) was the most common variant (67.9% of viruses with lineage determined). Full vaccination (receipt of two vaccine doses ≥14 days before illness onset) had been received by 8.2% of cases and 36.4% of controls. Overall vaccine effectiveness was 87.1% (95% CI: 80.7 to 91.3%). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.4%; 95% CI: 79.3 to 99.7%). Among 45 patients with vaccine-breakthrough Covid hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (62.9%; 95% CI: 20.8 to 82.6%) than without immunosuppression (91.3%; 95% CI: 85.6 to 94.8%). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing Covid-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population.

19.
Infect Control Hosp Epidemiol ; : 1-6, 2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1320205

ABSTRACT

OBJECTIVE: The coronavirus disease 2019 (COVID-19) vaccine may hold the key to ending the pandemic, but vaccine hesitancy is hindering the vaccination of healthcare personnel (HCP). We examined their perceptions of the COVID-19 vaccine and implemented an intervention to increase vaccination uptake. DESIGN: Before-and-after trial. PARTICIPANTS AND SETTING: Healthcare personnel at a 790-bed tertiary-care center in Tokyo, Japan. INTERVENTIONS: A prevaccination questionnaire was administered to HCP to examine their perceptions of the COVID-19 vaccine. A multifaceted intervention was then implemented involving (1) distribution of informational leaflets to all HCP, (2) hospital-wide announcements encouraging vaccination, (3) a mandatory lecture, (4) an educational session about the vaccine for pregnant or breastfeeding HCP, and (5) allergy testing for HCP at risk of allergic reactions to the vaccine. A postvaccination survey was also performed. RESULTS: Of 1,575 HCP eligible for enrollment, 1,224 (77.7%) responded to the questionnaire, 533 (43.5%) expressed willingness to be vaccinated, 593 (48.4%) were uncertain, and 98 (8.0%) expressed unwillingness to be vaccinated. The latter 2 groups were concerned about the vaccine's safety rather than its efficacy. After the intervention, the overall vaccination rate reached 89.7% (1,413 of 1,575), and 88.9% (614 of 691) of the prevaccination survey respondents answered "unwilling" to or "unsure" about eventually receiving a vaccination. In the postvaccination questionnaire, factors contributing to increased COVID-19 vaccination included information and endorsement of vaccination at the medical center (274 of 1,037, 26.4%). CONCLUSIONS: This multifaceted intervention increased COVID-19 vaccinations among HCP at a Japanese hospital. Frequent support and provision of information were crucial for increasing the vaccination rate and may be applicable to the general population as well.

20.
Infect Control Hosp Epidemiol ; 43(2): 156-166, 2022 02.
Article in English | MEDLINE | ID: covidwho-1243263

ABSTRACT

This SHEA white paper identifies knowledge gaps and challenges in healthcare epidemiology research related to coronavirus disease 2019 (COVID-19) with a focus on core principles of healthcare epidemiology. These gaps, revealed during the worst phases of the COVID-19 pandemic, are described in 10 sections: epidemiology, outbreak investigation, surveillance, isolation precaution practices, personal protective equipment (PPE), environmental contamination and disinfection, drug and supply shortages, antimicrobial stewardship, healthcare personnel (HCP) occupational safety, and return to work policies. Each section highlights three critical healthcare epidemiology research questions with detailed description provided in supplementary materials. This research agenda calls for translational studies from laboratory-based basic science research to well-designed, large-scale studies and health outcomes research. Research gaps and challenges related to nursing homes and social disparities are included. Collaborations across various disciplines, expertise and across diverse geographic locations will be critical.


Subject(s)
COVID-19 , Delivery of Health Care , Health Personnel , Humans , Pandemics , Personal Protective Equipment , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL