Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Molecules ; 27(13)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1917636

ABSTRACT

The urgent response to the COVID-19 pandemic required accelerated evaluation of many approved drugs as potential antiviral agents against the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using cell-based, biochemical, and modeling approaches, we studied the approved HIV-1 nucleoside/tide reverse transcriptase inhibitors (NRTIs) tenofovir (TFV) and emtricitabine (FTC), as well as prodrugs tenofovir alafenamide (TAF) and tenofovir disoproxilfumarate (TDF) for their antiviral effect against SARS-CoV-2. A comprehensive set of in vitro data indicates that TFV, TAF, TDF, and FTC are inactive against SARS-CoV-2. None of the NRTIs showed antiviral activity in SARS-CoV-2 infected A549-hACE2 cells or in primary normal human lung bronchial epithelial (NHBE) cells at concentrations up to 50 µM TAF, TDF, FTC, or 500 µM TFV. These results are corroborated by the low incorporation efficiency of respective NTP analogs by the SARS-CoV-2 RNA-dependent-RNA polymerase (RdRp), and lack of the RdRp inhibition. Structural modeling further demonstrated poor fitting of these NRTI active metabolites at the SARS-CoV-2 RdRp active site. Our data indicate that the HIV-1 NRTIs are unlikely direct-antivirals against SARS-CoV-2, and clinicians and researchers should exercise caution when exploring ideas of using these and other NRTIs to treat or prevent COVID-19.


Subject(s)
Anti-HIV Agents , COVID-19 Drug Treatment , HIV Infections , HIV-1 , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Emtricitabine/pharmacology , Emtricitabine/therapeutic use , HIV Infections/drug therapy , Humans , Nucleosides/pharmacology , Nucleosides/therapeutic use , Nucleotides/pharmacology , Pandemics , RNA, Viral , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Tenofovir/pharmacology , Tenofovir/therapeutic use
2.
Antiviral Res ; 203: 105329, 2022 07.
Article in English | MEDLINE | ID: covidwho-1819427

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, has infected over 260 million people over the past 2 years. Remdesivir (RDV, VEKLURY®) is currently the only antiviral therapy fully approved by the FDA for the treatment of COVID-19. The parent nucleoside of RDV, GS-441524, exhibits antiviral activity against numerous respiratory viruses including SARS-CoV-2, although at reduced in vitro potency compared to RDV in most assays. Here we find in both human alveolar and bronchial primary cells, GS-441524 is metabolized to the pharmacologically active GS-441524 triphosphate (TP) less efficiently than RDV, which correlates with a lower in vitro SARS-CoV-2 antiviral activity. In vivo, African green monkeys (AGM) orally dosed with GS-441524 yielded low plasma levels due to limited oral bioavailability of <10%. When GS-441524 was delivered via intravenous (IV) administration, although plasma concentrations of GS-441524 were significantly higher, lung TP levels were lower than observed from IV RDV. To determine the required systemic exposure of GS-441524 associated with in vivo antiviral efficacy, SARS-CoV-2 infected AGMs were treated with a once-daily IV dose of either 7.5 or 20 mg/kg GS-441524 or IV RDV for 5 days and compared to vehicle control. Despite the reduced lung TP formation compared to IV dosing of RDV, daily treatment with IV GS-441524 resulted in dose-dependent efficacy, with the 20 mg/kg GS-441524 treatment resulting in significant reductions of SARS-CoV-2 replication in the lower respiratory tract of infected animals. These findings demonstrate the in vivo SARS-CoV-2 antiviral efficacy of GS-441524 and support evaluation of its orally bioavailable prodrugs as potential therapies for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Adenosine/analogs & derivatives , Animals , Antiviral Agents/therapeutic use , Chlorocebus aethiops , Humans , Pandemics , SARS-CoV-2
3.
Sci Transl Med ; 14(643): eabm3410, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1752762

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic remains uncontrolled despite the rapid rollout of safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. In addition, the emergence of SARS-CoV-2 variants of concern, with their potential to escape neutralization by therapeutic monoclonal antibodies, emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parent nucleoside of remdesivir, which targets the highly conserved virus RNA-dependent RNA polymerase. GS-621763 exhibited antiviral activity against SARS-CoV-2 in lung cell lines and two different human primary lung cell culture systems. GS-621763 was also potently antiviral against a genetically unrelated emerging coronavirus, Middle East respiratory syndrome CoV (MERS-CoV). The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 administration reduced viral load and lung pathology; treatment also improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral that has recently received EUA approval, proved both drugs to be similarly efficacious in mice. These data support the exploration of GS-441524 oral prodrugs for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Infections , Prodrugs , Adenosine/analogs & derivatives , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Humans , Mice , Nucleosides , Parents , Prodrugs/pharmacology , Prodrugs/therapeutic use , SARS-CoV-2
4.
Antiviral Res ; 198: 105246, 2022 02.
Article in English | MEDLINE | ID: covidwho-1639070

ABSTRACT

The utility of remdesivir treatment in COVID-19 patients is currently limited by the necessity to administer this antiviral intravenously, which has generally limited its use to hospitalized patients. Here, we tested a novel, subcutaneous formulation of remdesivir in the rhesus macaque model of SARS-CoV-2 infection that was previously used to establish the efficacy of remdesivir against this virus in vivo. Compared to vehicle-treated animals, macaques treated with subcutaneous remdesivir from 12 h through 6 days post inoculation showed reduced signs of respiratory disease, a reduction of virus replication in the lower respiratory tract, and an absence of interstitial pneumonia. Thus, early subcutaneous administration of remdesivir can protect from lower respiratory tract disease caused by SARS-CoV-2.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Lung Diseases, Interstitial/prevention & control , SARS-CoV-2/drug effects , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/therapeutic use , Administration, Cutaneous , Alanine/administration & dosage , Alanine/pharmacokinetics , Alanine/therapeutic use , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Disease Models, Animal , Female , Lung/pathology , Lung/virology , Macaca mulatta , Male , Viral Load/drug effects , Virus Replication/drug effects
5.
Sci Transl Med ; 14(633): eabl8282, 2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1598975

ABSTRACT

Remdesivir (RDV) is a nucleotide analog prodrug with demonstrated clinical benefit in patients with coronavirus disease 2019 (COVID-19). In October 2020, the US FDA approved intravenous (IV) RDV as the first treatment for hospitalized COVID-19 patients. Furthermore, RDV has been approved or authorized for emergency use in more than 50 countries. To make RDV more convenient for non-hospitalized patients earlier in disease, alternative routes of administration are being evaluated. Here, we investigated the pharmacokinetics and efficacy of RDV administered by head dome inhalation in African green monkeys (AGM). Relative to an IV administration of RDV at 10 mg/kg, an approximately 20-fold lower dose administered by inhalation produced comparable concentrations of the pharmacologically active triphosphate in lower respiratory tract tissues. Distribution of the active triphosphate into the upper respiratory tract was also observed following inhaled RDV exposure. Inhalation RDV dosing resulted in lower systemic exposures to RDV and its metabolites as compared with IV RDV dosing. An efficacy study with repeated dosing of inhaled RDV in an AGM model of SARS-CoV-2 infection demonstrated reductions in viral replication in bronchoalveolar lavage fluid and respiratory tract tissues compared with placebo. Efficacy was observed with inhaled RDV administered once daily at a pulmonary deposited dose of 0.35 mg/kg beginning approximately 8 hours post-infection. Moreover, the efficacy of inhaled RDV was similar to that of IV RDV administered once at 10 mg/kg followed by 5 mg/kg daily in the same study. Together, these findings support further clinical development of inhalation RDV.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacokinetics , Chlorocebus aethiops , Humans , Primates , SARS-CoV-2 , Viral Load
6.
Nat Commun ; 12(1): 6415, 2021 11 05.
Article in English | MEDLINE | ID: covidwho-1503781

ABSTRACT

Remdesivir is an antiviral approved for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterizes the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibit SARS-CoV-2, including variants of concern (VOC) in cell culture and human airway epithelium organoids. Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets. When dosed therapeutically against VOC P.1 gamma γ, oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Prodrugs/pharmacology , SARS-CoV-2/drug effects , Adenosine/pharmacology , Animals , COVID-19/metabolism , COVID-19/virology , Cell Line , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Female , Ferrets , Humans , SARS-CoV-2/isolation & purification
7.
Antimicrob Agents Chemother ; 65(9): e0060221, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1434879

ABSTRACT

Remdesivir (RDV; GS-5734, Veklury), the first FDA-approved antiviral to treat COVID-19, is a single-diastereomer monophosphoramidate prodrug of an adenosine analogue. RDV is taken up in the target cells and metabolized in multiple steps to form the active nucleoside triphosphate (TP) (GS-443902), which, in turn, acts as a potent and selective inhibitor of multiple viral RNA polymerases. In this report, we profiled the key enzymes involved in the RDV metabolic pathway with multiple parallel approaches: (i) bioinformatic analysis of nucleoside/nucleotide metabolic enzyme mRNA expression using public human tissue and lung single-cell bulk mRNA sequence (RNA-seq) data sets, (ii) protein and mRNA quantification of enzymes in human lung tissue and primary lung cells, (iii) biochemical studies on the catalytic rate of key enzymes, (iv) effects of specific enzyme inhibitors on the GS-443902 formation, and (v) the effects of these inhibitors on RDV antiviral activity against SARS-CoV-2 in cell culture. Our data collectively demonstrated that carboxylesterase 1 (CES1) and cathepsin A (CatA) are enzymes involved in hydrolyzing RDV to its alanine intermediate MetX, which is further hydrolyzed to the monophosphate form by histidine triad nucleotide-binding protein 1 (HINT1). The monophosphate is then consecutively phosphorylated to diphosphate and triphosphate by cellular phosphotransferases. Our data support the hypothesis that the unique properties of RDV prodrug not only allow lung-specific accumulation critical for the treatment of respiratory viral infection such as COVID-19 but also enable efficient intracellular metabolism of RDV and its MetX to monophosphate and successive phosphorylation to form the active TP in disease-relevant cells.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Humans , Lung , Nerve Tissue Proteins
8.
J Med Chem ; 64(8): 5001-5017, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1174625

ABSTRACT

A discovery program targeting respiratory syncytial virus (RSV) identified C-nucleoside 4 (RSV A2 EC50 = 530 nM) as a phenotypic screening lead targeting the RSV RNA-dependent RNA polymerase (RdRp). Prodrug exploration resulted in the discovery of remdesivir (1, GS-5734) that is >30-fold more potent than 4 against RSV in HEp-2 and NHBE cells. Metabolism studies in vitro confirmed the rapid formation of the active triphosphate metabolite, 1-NTP, and in vivo studies in cynomolgus and African Green monkeys demonstrated a >10-fold higher lung tissue concentration of 1-NTP following molar normalized IV dosing of 1 compared to that of 4. A once daily 10 mg/kg IV administration of 1 in an African Green monkey RSV model demonstrated a >2-log10 reduction in the peak lung viral load. These early data following the discovery of 1 supported its potential as a novel treatment for RSV prior to its development for Ebola and approval for COVID-19 treatment.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Prodrugs/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Caco-2 Cells , Cells, Cultured , Chlorocebus aethiops , Disease Models, Animal , Dogs , Drug Evaluation, Preclinical/methods , Epithelial Cells/virology , Humans , Macaca fascicularis , Male , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Rats, Sprague-Dawley , Respiratory Syncytial Virus Infections/virology , Structure-Activity Relationship , Tissue Distribution , Tubercidin/analogs & derivatives , Tubercidin/chemistry , Viral Load
9.
Clin Pharmacokinet ; 60(5): 569-583, 2021 05.
Article in English | MEDLINE | ID: covidwho-1157031

ABSTRACT

Remdesivir (RDV, Veklury®) is a once-daily, nucleoside ribonucleic acid polymerase inhibitor of severe acute respiratory syndrome coronavirus 2 replication. Remdesivir has been granted approvals in several countries for use in adults and children hospitalized with severe coronavirus disease 2019 (COVID-19). Inside the cell, remdesivir undergoes metabolic activation to form the intracellular active triphosphate metabolite, GS-443902 (detected in peripheral blood mononuclear cells), and ultimately, the renally eliminated plasma metabolite GS-441524. This review discusses the pre-clinical pharmacology of RDV, clinical pharmacokinetics, pharmacodynamics/concentration-QT analysis, rationale for dose selection for treatment of patients with COVID-19, and drug-drug interaction potential based on available in vitro and clinical data in healthy volunteers. Following single-dose intravenous administration over 2 h of an RDV solution formulation across the dose range of 3-225 mg in healthy participants, RDV and its metabolites (GS-704277and GS-441524) exhibit linear pharmacokinetics. Following multiple doses of RDV 150 mg once daily for 7 or 14 days, major metabolite GS-441524 accumulates approximately 1.9-fold in plasma. Based on pharmacokinetic bridging from animal data and available human data in healthy volunteers, the RDV clinical dose regimen of a 200-mg loading dose on day 1 followed by 100-mg maintenance doses for 4 or 9 days was selected for further evaluation of pharmacokinetics and safety. Results showed high intracellular concentrations of GS-443902 suggestive of efficient conversion from RDV into the triphosphate form, and further supporting this clinical dosing regimen for the treatment of COVID-19. Mathematical drug-drug interaction liability predictions, based on in vitro and phase I data, suggest RDV has low potential for drug-drug interactions, as the impact of inducers or inhibitors on RDV disposition is minimized by the parenteral route of administration and extensive extraction. Using physiologically based pharmacokinetic modeling, RDV is not predicted to be a clinically significant inhibitor of drug-metabolizing enzymes or transporters in patients infected with COVID-19 at therapeutic RDV doses.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Adenosine/analogs & derivatives , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Adult , Alanine/pharmacokinetics , Alanine/pharmacology , Alanine/therapeutic use , Animals , Antiviral Agents/pharmacokinetics , Area Under Curve , Dose-Response Relationship, Drug , Drug Interactions , Furans/metabolism , Half-Life , Humans , Metabolic Clearance Rate , Pyrroles/metabolism , SARS-CoV-2 , Triazines/metabolism
10.
Antimicrob Agents Chemother ; 65(2)2021 01 20.
Article in English | MEDLINE | ID: covidwho-1044768

ABSTRACT

Remdesivir (RDV, GS-5734), the first FDA-approved antiviral for the treatment of COVID-19, is a single diastereomer monophosphoramidate prodrug of an adenosine analogue. It is intracellularly metabolized into the active triphosphate form, which in turn acts as a potent and selective inhibitor of multiple viral RNA polymerases. RDV has broad-spectrum activity against members of the coronavirus family, such as SARS-CoV-2, SARS-CoV, and MERS-CoV, as well as filoviruses and paramyxoviruses. To assess the potential for off-target toxicity, RDV was evaluated in a set of cellular and biochemical assays. Cytotoxicity was evaluated in a set of relevant human cell lines and primary cells. In addition, RDV was evaluated for mitochondrial toxicity under aerobic and anaerobic metabolic conditions, and for the effects on mitochondrial DNA content, mitochondrial protein synthesis, cellular respiration, and induction of reactive oxygen species. Last, the active 5'-triphosphate metabolite of RDV, GS-443902, was evaluated for potential interaction with human DNA and RNA polymerases. Among all of the human cells tested under 5 to 14 days of continuous exposure, the 50% cytotoxic concentration (CC50) values of RDV ranged from 1.7 to >20 µM, resulting in selectivity indices (SI, CC50/EC50) from >170 to 20,000, with respect to RDV anti-SARS-CoV-2 activity (50% effective concentration [EC50] of 9.9 nM in human airway epithelial cells). Overall, the cellular and biochemical assays demonstrated a low potential for RDV to elicit off-target toxicity, including mitochondria-specific toxicity, consistent with the reported clinical safety profile.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , Cell Line , Epithelial Cells/drug effects , Humans , Inhibitory Concentration 50 , Mitochondria/drug effects , Primary Cell Culture
11.
Cell Rep ; 32(3): 107940, 2020 07 21.
Article in English | MEDLINE | ID: covidwho-635658

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the novel viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV) potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC50 = 0.01 µM). Weaker activity is observed in Vero E6 cells (EC50 = 1.65 µM) because of their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase of SARS-CoV-2. In mice infected with the chimeric virus, therapeutic RDV administration diminishes lung viral load and improves pulmonary function compared with vehicle-treated animals. These data demonstrate that RDV is potently active against SARS-CoV-2 in vitro and in vivo, supporting its further clinical testing for treatment of COVID-19.

12.
Nat Commun ; 11(1): 222, 2020 01 10.
Article in English | MEDLINE | ID: covidwho-326513

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is the causative agent of a severe respiratory disease associated with more than 2468 human infections and over 851 deaths in 27 countries since 2012. There are no approved treatments for MERS-CoV infection although a combination of lopinavir, ritonavir and interferon beta (LPV/RTV-IFNb) is currently being evaluated in humans in the Kingdom of Saudi Arabia. Here, we show that remdesivir (RDV) and IFNb have superior antiviral activity to LPV and RTV in vitro. In mice, both prophylactic and therapeutic RDV improve pulmonary function and reduce lung viral loads and severe lung pathology. In contrast, prophylactic LPV/RTV-IFNb slightly reduces viral loads without impacting other disease parameters. Therapeutic LPV/RTV-IFNb improves pulmonary function but does not reduce virus replication or severe lung pathology. Thus, we provide in vivo evidence of the potential for RDV to treat MERS-CoV infections.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Coronavirus Infections/drug therapy , Interferon-beta/therapeutic use , Lopinavir/therapeutic use , Middle East Respiratory Syndrome Coronavirus/drug effects , Ritonavir/therapeutic use , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Animals , Antiviral Agents/therapeutic use , Carboxylesterase/genetics , Coronavirus Infections/pathology , Drug Combinations , Drug Development , Female , Humans , Lung Injury/pathology , Male , Mice , Mice, Knockout , Viral Load , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL