Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biomedicines ; 10(4):812, 2022.
Article in English | MDPI | ID: covidwho-1762067

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a worldwide emergency, until the declaration of the pandemic in March 2020. SARS-CoV-2 could be responsible for coronavirus disease 2019 (COVID-19), which goes from a flu-like illness to a potentially fatal condition that needs intensive care. Furthermore, the persistence of functional disability and long-term cardiovascular sequelae in COVID-19 survivors suggests that convalescent patients may suffer from post-acute COVID-19 syndrome, requiring long-term care and personalized rehabilitation. However, the pathophysiology of acute and post-acute manifestations of COVID-19 is still under study, as a better comprehension of these mechanisms would ensure more effective personalized therapies. To date, mounting evidence suggests a crucial endothelial contribution to the clinical manifestations of COVID-19, as endothelial cells appear to be a direct or indirect preferential target of the virus. Thus, the dysregulation of many of the homeostatic pathways of the endothelium has emerged as a hallmark of severity in COVID-19. The aim of this review is to summarize the pathophysiology of endothelial dysfunction in COVID-19, with a focus on personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction as an attractive therapeutic option in this clinical setting.

2.
J Cardiovasc Dev Dis ; 9(1)2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1613840

ABSTRACT

BACKGROUND: It is uncertain whether exposure to renin-angiotensin system (RAS) modifiers affects the severity of the new coronavirus disease 2019 (COVID-19) because most of the available studies are retrospective. METHODS: We tested the prognostic value of exposure to RAS modifiers (either angiotensin-converting enzyme inhibitors [ACE-Is] or angiotensin receptor blockers [ARBs]) in a prospective study of hypertensive patients with COVID-19. We analyzed data from 566 patients (mean age 75 years, 54% males, 162 ACE-Is users, and 147 ARBs users) hospitalized in five Italian hospitals. The study used systematic prospective data collection according to a pre-specified protocol. All-cause mortality during hospitalization was the primary outcome. RESULTS: Sixty-six patients died during hospitalization. Exposure to RAS modifiers was associated with a significant reduction in the risk of in-hospital mortality when compared to other BP-lowering strategies (odds ratio [OR]: 0.54, 95% confidence interval [CI]: 0.32 to 0.90, p = 0.019). Exposure to ACE-Is was not significantly associated with a reduced risk of in-hospital mortality when compared with patients not treated with RAS modifiers (OR: 0.66, 95% CI: 0.36 to 1.20, p = 0.172). Conversely, ARBs users showed a 59% lower risk of death (OR: 0.41, 95% CI: 0.20 to 0.84, p = 0.016) even after allowance for several prognostic markers, including age, oxygen saturation, occurrence of severe hypotension during hospitalization, and lymphocyte count (adjusted OR: 0.37, 95% CI: 0.17 to 0.80, p = 0.012). The discontinuation of RAS modifiers during hospitalization did not exert a significant effect (p = 0.515). CONCLUSIONS: This prospective study indicates that exposure to ARBs reduces mortality in hospitalized patients with COVID-19.

3.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295517

ABSTRACT

Introduction: & Background: the SARS-CoV-2 infection determines the COVID-19 syndrome characterized, in the worst cases, by severe respiratory distress, pulmonary and cardiac fibrosis,inflammatory cytokines release, and immunodepression. This condition has led to the death of about 2.15% of the total infected world population so far. Among survivors, the presence of the so-called post-COVID19 syndrome (PPCS) is a common finding. In patients who survived the SARS-CoV-2 infection, overt PPCS presents one or more symptoms such as fatigue, dyspnea, memory loss, sleep disorders, and difficulty concentrating. The pathophysiology of PPCS is currently poorly understood, and whether epigenetic mechanisms are involved in this process is unexplored. Methods & Results: In this study, a cohort of 117 COVID19 survivors (post-COVID19) and 144 non-infected volunteers (COVID19-free) were analyzed using pyrosequencing of defined CpG islands previously identified as suitable for biological age determination. Besides, telomere length (TL) and ACE2 and DPP4 receptor expression were determined. The results show a consistent biological age increase in the post-covid population (mean 58,44 DS 14,66 ChronoAge Vs. mean 67,18 DS 10,86 BioAge, P<0,0001), determining a DeltaAge acceleration of 10,45 DS 7,29 years (+5.25 years above range of normality) compared to 3,68 DS 8,17 years for the COVID19-free population (P<0,0001). A significant telomere shortening parallels this finding in the post-COVID19 cohort compared to COVID19-free subjects (post-COVID19 TL: 3,03 DS 2,39 Kb vs. COVID19-free: 10,67 DS 11,69 Kb;P<0,0001). Additionally, ACE2 expression was decreased in post-COVID19 patients compare to COVID19-free, while DPP-4 did not change. Conclusion: In light of these observations, we hypothesize that some epigenetic alterations are associated with the post-COVID19 condition, particularly in the younger (<60 years). Although the consequences of such modifications on the long-term clinical outcome remain unclear, they might 46 indicate a direction to investigate the pathophysiological basis of the post-COVID19 syndrome

4.
Int J Mol Sci ; 22(11)2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1259510

ABSTRACT

The SARS-CoV-2 infection determines the COVID-19 syndrome characterized, in the worst cases, by severe respiratory distress, pulmonary and cardiac fibrosis, inflammatory cytokine release, and immunosuppression. This condition has led to the death of about 2.15% of the total infected world population so far. Among survivors, the presence of the so-called persistent post-COVID-19 syndrome (PPCS) is a common finding. In COVID-19 survivors, PPCS presents one or more symptoms: fatigue, dyspnea, memory loss, sleep disorders, and difficulty concentrating. In this study, a cohort of 117 COVID-19 survivors (post-COVID-19) and 144 non-infected volunteers (COVID-19-free) was analyzed using pyrosequencing of defined CpG islands previously identified as suitable for biological age determination. The results show a consistent biological age increase in the post-COVID-19 population, determining a DeltaAge acceleration of 10.45 ± 7.29 years (+5.25 years above the range of normality) compared with 3.68 ± 8.17 years for the COVID-19-free population (p < 0.0001). A significant telomere shortening parallels this finding in the post-COVID-19 cohort compared with COVID-19-free subjects (p < 0.0001). Additionally, ACE2 expression was decreased in post-COVID-19 patients, compared with the COVID-19-free population, while DPP-4 did not change. In light of these observations, we hypothesize that some epigenetic alterations are associated with the post-COVID-19 condition, particularly in younger patients (< 60 years).


Subject(s)
Aging/genetics , COVID-19/genetics , COVID-19/physiopathology , CpG Islands , Telomere Shortening , Telomere/metabolism , Adult , Aged , Angiotensin-Converting Enzyme 2/blood , Biomarkers , COVID-19/complications , COVID-19/etiology , DNA Methylation , Dipeptidyl Peptidase 4/blood , Epigenomics , Female , High-Throughput Nucleotide Sequencing , Host Microbial Interactions , Humans , Male , Middle Aged , Risk Factors , Survivors
5.
Eur J Intern Med ; 89: 81-86, 2021 07.
Article in English | MEDLINE | ID: covidwho-1209445

ABSTRACT

AIMS: heart failure (HF) and coronary artery disease (CAD) are independent predictors of death in patients with COVID-19. The adverse prognostic impact of the combination of HF and CAD in these patients is unclear. METHODS AND RESULTS: we analysed data from 954 consecutive patients hospitalized for SARS-CoV-2 in five Italian Hospitals from February 23 to May 22, 2020. The study was a systematic prospective data collection according to a pre-specified protocol. All-cause mortality during hospitalization was the outcome measure. Mean duration of hospitalization was 33 days. Mortality was 11% in the total population and 7.4% in the group without evidence of HF or CAD (reference group). Mortality was 11.6% in the group with CAD and without HF (odds ratio [OR]: 1.6, p = 0.120), 15.5% in the group with HF and without CAD (OR: 2.3, p = 0.032), and 35.6% in the group with CAD and HF (OR: 6.9, p<0.0001). The risk of mortality in patients with CAD and HF combined was consistently higher than the sum of risks related to either disorder, resulting in a significant synergistic effect (p<0.0001) of the two conditions. Age-adjusted attributable proportion due to interaction was 64%. Adjusting for the simultaneous effects of age, hypotension, and lymphocyte count did not significantly lower attributable proportion which persisted statistically significant (p = 0.0360). CONCLUSION: The combination of HF and CAD exerts a marked detrimental impact on the risk of mortality in hospitalized patients with COVID-19, which is independent on other adverse prognostic markers.


Subject(s)
COVID-19 , Coronary Artery Disease , Heart Failure , Hospitalization , Humans , Italy/epidemiology , Prospective Studies , Risk Factors , SARS-CoV-2
6.
SELECTION OF CITATIONS
SEARCH DETAIL