Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
The Lancet ; 400(10356):921-972, 2022.
Article in English | ProQuest Central | ID: covidwho-2036628

ABSTRACT

Executive summary Despite substantial progress in reducing the global impact of many non-communicable diseases, including heart disease and cancer, morbidity and mortality due to chronic respiratory disease continues to increase. Many factors have contributed to what must now be considered a public health emergency: failure to limit the sale and consumption of tobacco products, unchecked exposure to environmental pollutants across the life course, and the ageing of the global population (partly as a result of improved outcomes for other conditions). In particular, we advocate for: broader understanding of risk factors (including the devastating effects of global poverty) and the preventive measures necessary to avoid future cases of COPD, disruptive approaches to diagnosis that are not solely based on spirometric airflow limitation but also involve identification of early pathological changes that are more amenable to reversal, classification of the disease into types that share pathophysiological similarities and could lead to novel preventive and therapeutic approaches, and a new approach to the diagnosis and assessment of exacerbations of COPD that focuses on disease mechanisms. An acute worsening of COPD is termed an exacerbation, and such episodes account for a substantial proportion of the attributable cost of the disease and are associated with accelerated lung function loss, prolonged impairments in quality of life, and similar prognosis to many stage III or IV solid organ malignancies.

2.
Lancet ; 399(10342): 2227-2242, 2022 06 11.
Article in English | MEDLINE | ID: covidwho-1821535

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health-care use worldwide. COPD is caused by exposure to inhaled noxious particles, notably tobacco smoke and pollutants. However, the broad range of factors that increase the risk of development and progression of COPD throughout the life course are increasingly being recognised. Innovations in omics and imaging techniques have provided greater insight into disease pathobiology, which might result in advances in COPD prevention, diagnosis, and treatment. Although few novel treatments have been approved for COPD in the past 5 years, advances have been made in targeting existing therapies to specific subpopulations using new biomarker-based strategies. Additionally, COVID-19 has undeniably affected individuals with COPD, who are not only at higher risk for severe disease manifestations than healthy individuals but also negatively affected by interruptions in health-care delivery and social isolation. This Seminar reviews COPD with an emphasis on recent advances in epidemiology, pathophysiology, imaging, diagnosis, and treatment.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/etiology , Smoke
3.
Lancet Respir Med ; 9(7): e61, 2021 07.
Article in English | MEDLINE | ID: covidwho-1778525
4.
Lancet Respir Med ; 10(6): 545-556, 2022 06.
Article in English | MEDLINE | ID: covidwho-1778526

ABSTRACT

BACKGROUND: Community-based clinical trials of the inhaled corticosteroid budesonide in early COVID-19 have shown improved patient outcomes. We aimed to understand the inflammatory mechanism of budesonide in the treatment of early COVID-19. METHODS: The STOIC trial was a randomised, open label, parallel group, phase 2 clinical intervention trial where patients were randomly assigned (1:1) to receive usual care (as needed antipyretics were only available treatment) or inhaled budesonide at a dose of 800 µg twice a day plus usual care. For this experimental analysis, we investigated the nasal mucosal inflammatory response in patients recruited to the STOIC trial and in a cohort of SARS-CoV-2-negative healthy controls, recruited from a long-term observational data collection study at the University of Oxford. In patients with SARS-CoV-2 who entered the STOIC study, nasal epithelial lining fluid was sampled at day of randomisation (day 0) and at day 14 following randomisation, blood samples were also collected at day 28 after randomisation. Nasal epithelial lining fluid and blood samples were collected from the SARS-CoV-2 negative control cohort. Inflammatory mediators in the nasal epithelial lining fluid and blood were assessed for a range of viral response proteins, and innate and adaptive response markers using Meso Scale Discovery enzyme linked immunoassay panels. These samples were used to investigate the evolution of inflammation in the early COVID-19 disease course and assess the effect of budesonide on inflammation. FINDINGS: 146 participants were recruited in the STOIC trial (n=73 in the usual care group; n=73 in the budesonide group). 140 nasal mucosal samples were available at day 0 (randomisation) and 122 samples at day 14. At day 28, whole blood was collected from 123 participants (62 in the budesonide group and 61 in the usual care group). 20 blood or nasal samples were collected from healthy controls. In early COVID-19 disease, there was an enhanced inflammatory airway response with the induction of an anti-viral and T-helper 1 and 2 (Th1/2) inflammatory response compared with healthy individuals. Individuals with COVID-19 who clinically deteriorated (ie, who met the primary outcome) showed an early blunted respiratory interferon response and pronounced and persistent Th2 inflammation, mediated by CC chemokine ligand (CCL)-24, compared with those with COVID-19 who did not clinically deteriorate. Over time, the natural course of COVID-19 showed persistently high respiratory interferon concentrations and elevated concentrations of the eosinophil chemokine, CCL-11, despite clinical symptom improvement. There was persistent systemic inflammation after 28 days following COVID-19, including elevated concentrations of interleukin (IL)-6, tumour necrosis factor-α, and CCL-11. Budesonide treatment modulated inflammation in the nose and blood and was shown to decrease IL-33 and increase CCL17. The STOIC trial was registered with ClinicalTrials.gov, NCT04416399. INTERPRETATION: An initial blunted interferon response and heightened T-helper 2 inflammatory response in the respiratory tract following SARS-CoV-2 infection could be a biomarker for predicting the development of severe COVID-19 disease. The clinical benefit of inhaled budesonide in early COVID-19 is likely to be as a consequence of its inflammatory modulatory effect, suggesting efficacy by reducing epithelial damage and an improved T-cell response. FUNDING: Oxford National Institute of Health Research Biomedical Research Centre and AstraZeneca.


Subject(s)
COVID-19 , Adrenal Cortex Hormones/therapeutic use , Antiviral Agents/therapeutic use , Budesonide/therapeutic use , COVID-19/drug therapy , Humans , Inflammation/drug therapy , Interferons , Respiratory Mucosa , SARS-CoV-2 , Treatment Outcome
5.
Lancet ; 398(10303): 843-855, 2021 09 04.
Article in English | MEDLINE | ID: covidwho-1599473

ABSTRACT

BACKGROUND: A previous efficacy trial found benefit from inhaled budesonide for COVID-19 in patients not admitted to hospital, but effectiveness in high-risk individuals is unknown. We aimed to establish whether inhaled budesonide reduces time to recovery and COVID-19-related hospital admissions or deaths among people at high risk of complications in the community. METHODS: PRINCIPLE is a multicentre, open-label, multi-arm, randomised, controlled, adaptive platform trial done remotely from a central trial site and at primary care centres in the UK. Eligible participants were aged 65 years or older or 50 years or older with comorbidities, and unwell for up to 14 days with suspected COVID-19 but not admitted to hospital. Participants were randomly assigned to usual care, usual care plus inhaled budesonide (800 µg twice daily for 14 days), or usual care plus other interventions, and followed up for 28 days. Participants were aware of group assignment. The coprimary endpoints are time to first self-reported recovery and hospital admission or death related to COVID-19, within 28 days, analysed using Bayesian models. The primary analysis population included all eligible SARS-CoV-2-positive participants randomly assigned to budesonide, usual care, and other interventions, from the start of the platform trial until the budesonide group was closed. This trial is registered at the ISRCTN registry (ISRCTN86534580) and is ongoing. FINDINGS: The trial began enrolment on April 2, 2020, with randomisation to budesonide from Nov 27, 2020, until March 31, 2021, when the prespecified time to recovery superiority criterion was met. 4700 participants were randomly assigned to budesonide (n=1073), usual care alone (n=1988), or other treatments (n=1639). The primary analysis model includes 2530 SARS-CoV-2-positive participants, with 787 in the budesonide group, 1069 in the usual care group, and 974 receiving other treatments. There was a benefit in time to first self-reported recovery of an estimated 2·94 days (95% Bayesian credible interval [BCI] 1·19 to 5·12) in the budesonide group versus the usual care group (11·8 days [95% BCI 10·0 to 14·1] vs 14·7 days [12·3 to 18·0]; hazard ratio 1·21 [95% BCI 1·08 to 1·36]), with a probability of superiority greater than 0·999, meeting the prespecified superiority threshold of 0·99. For the hospital admission or death outcome, the estimated rate was 6·8% (95% BCI 4·1 to 10·2) in the budesonide group versus 8·8% (5·5 to 12·7) in the usual care group (estimated absolute difference 2·0% [95% BCI -0·2 to 4·5]; odds ratio 0·75 [95% BCI 0·55 to 1·03]), with a probability of superiority 0·963, below the prespecified superiority threshold of 0·975. Two participants in the budesonide group and four in the usual care group had serious adverse events (hospital admissions unrelated to COVID-19). INTERPRETATION: Inhaled budesonide improves time to recovery, with a chance of also reducing hospital admissions or deaths (although our results did not meet the superiority threshold), in people with COVID-19 in the community who are at higher risk of complications. FUNDING: National Institute of Health Research and United Kingdom Research Innovation.


Subject(s)
Budesonide/administration & dosage , COVID-19/drug therapy , Glucocorticoids/administration & dosage , Administration, Inhalation , Aged , Bayes Theorem , COVID-19/mortality , Female , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , SARS-CoV-2 , Treatment Outcome
7.
BMJ Open Respir Res ; 8(1)2021 11.
Article in English | MEDLINE | ID: covidwho-1546539

ABSTRACT

INTRODUCTION: Respiratory high-dependency units (rHDUs) are used to manage respiratory failure in COVID-19 outside of the intensive care unit (ICU). The alpha variant of COVID-19 has been linked to increased rates of mortality and admission to ICU; however, its impact on a rHDU population is not known. We aimed to compare rHDU outcomes between the two main UK waves of COVID-19 infection and evaluate the impact of the alpha variant on second wave outcomes. METHODS: We conducted a single-centre, retrospective analysis of all patients with a diagnosis of COVID-19 admitted to the rHDU of our teaching hospital for respiratory support during the first and second main UK waves. RESULTS: In total, 348 patients were admitted to rHDU. In the second wave, mortality (26.7% s vs 50.7% first wave, χ2=14.7, df=1, p=0.0001) and intubation rates in those eligible (24.3% s vs 58.8% first wave, χ2=17.3, df=2, p=0.0002) were improved compared with the first wave. In the second wave, the alpha variant had no effect on mortality (OR 1.18, 95% CI 0.60 to 2.32, p=0.64). Continuous positive airway pressure (CPAP) (89.5%) and awake proning (85.6%) were used in most patients in the second wave. DISCUSSION: Our single-centre experience shows that rHDU mortality and intubation rates have improved over time in spite of the emergence of the alpha variant. Our data support the use of CPAP and awake proning, although improvements in outcome are likely to be multifactorial.


Subject(s)
COVID-19 , Respiratory Insufficiency , Humans , Respiratory Insufficiency/therapy , Retrospective Studies , SARS-CoV-2
8.
Lancet Respir Med ; 9(7): 763-772, 2021 07.
Article in English | MEDLINE | ID: covidwho-1337037

ABSTRACT

BACKGROUND: Multiple early reports of patients admitted to hospital with COVID-19 showed that patients with chronic respiratory disease were significantly under-represented in these cohorts. We hypothesised that the widespread use of inhaled glucocorticoids among these patients was responsible for this finding, and tested if inhaled glucocorticoids would be an effective treatment for early COVID-19. METHODS: We performed an open-label, parallel-group, phase 2, randomised controlled trial (Steroids in COVID-19; STOIC) of inhaled budesonide, compared with usual care, in adults within 7 days of the onset of mild COVID-19 symptoms. The trial was done in the community in Oxfordshire, UK. Participants were randomly assigned to inhaled budsonide or usual care stratified for age (≤40 years or >40 years), sex (male or female), and number of comorbidities (≤1 and ≥2). Randomisation was done using random sequence generation in block randomisation in a 1:1 ratio. Budesonide dry powder was delivered using a turbohaler at a dose of 400 µg per actuation. Participants were asked to take two inhalations twice a day until symptom resolution. The primary endpoint was COVID-19-related urgent care visit, including emergency department assessment or hospitalisation, analysed for both the per-protocol and intention-to-treat (ITT) populations. The secondary outcomes were self-reported clinical recovery (symptom resolution), viral symptoms measured using the Common Cold Questionnare (CCQ) and the InFLUenza Patient Reported Outcome Questionnaire (FLUPro), body temperature, blood oxygen saturations, and SARS-CoV-2 viral load. The trial was stopped early after independent statistical review concluded that study outcome would not change with further participant enrolment. This trial is registered with ClinicalTrials.gov, NCT04416399. FINDINGS: From July 16 to Dec 9, 2020, 167 participants were recruited and assessed for eligibility. 21 did not meet eligibility criteria and were excluded. 146 participants were randomly assigned-73 to usual care and 73 to budesonide. For the per-protocol population (n=139), the primary outcome occurred in ten (14%) of 70 participants in the usual care group and one (1%) of 69 participants in the budesonide group (difference in proportions 0·131, 95% CI 0·043 to 0·218; p=0·004). For the ITT population, the primary outcome occurred in 11 (15%) participants in the usual care group and two (3%) participants in the budesonide group (difference in proportions 0·123, 95% CI 0·033 to 0·213; p=0·009). The number needed to treat with inhaled budesonide to reduce COVID-19 deterioration was eight. Clinical recovery was 1 day shorter in the budesonide group compared with the usual care group (median 7 days [95% CI 6 to 9] in the budesonide group vs 8 days [7 to 11] in the usual care group; log-rank test p=0·007). The mean proportion of days with a fever in the first 14 days was lower in the budesonide group (2%, SD 6) than the usual care group (8%, SD 18; Wilcoxon test p=0·051) and the proportion of participants with at least 1 day of fever was lower in the budesonide group when compared with the usual care group. As-needed antipyretic medication was required for fewer proportion of days in the budesonide group compared with the usual care group (27% [IQR 0-50] vs 50% [15-71]; p=0·025) Fewer participants randomly assigned to budesonide had persistent symptoms at days 14 and 28 compared with participants receiving usual care (difference in proportions 0·204, 95% CI 0·075 to 0·334; p=0·003). The mean total score change in the CCQ and FLUPro over 14 days was significantly better in the budesonide group compared with the usual care group (CCQ mean difference -0·12, 95% CI -0·21 to -0·02 [p=0·016]; FLUPro mean difference -0·10, 95% CI -0·21 to -0·00 [p=0·044]). Blood oxygen saturations and SARS-CoV-2 load, measured by cycle threshold, were not different between the groups. Budesonide was safe, with only five (7%) participants reporting self-limiting adverse events. INTERPRETATION: Early administration of inhaled budesonide reduced the likelihood of needing urgent medical care and reduced time to recovery after early COVID-19. FUNDING: National Institute for Health Research Biomedical Research Centre and AstraZeneca.


Subject(s)
Budesonide/administration & dosage , COVID-19/drug therapy , Glucocorticoids/administration & dosage , Administration, Inhalation , Adult , Aged , Female , Humans , Male , Middle Aged , Time Factors , Young Adult
10.
Lancet Respir Med ; 9(7): e61, 2021 07.
Article in English | MEDLINE | ID: covidwho-1225444
11.
J R Soc Interface ; 18(175): 20200950, 2021 02.
Article in English | MEDLINE | ID: covidwho-1087877

ABSTRACT

While the pathological mechanisms in COVID-19 illness are still poorly understood, it is increasingly clear that high levels of pro-inflammatory mediators play a major role in clinical deterioration in patients with severe disease. Current evidence points to a hyperinflammatory state as the driver of respiratory compromise in severe COVID-19 disease, with a clinical trajectory resembling acute respiratory distress syndrome, but how this 'runaway train' inflammatory response emerges and is maintained is not known. Here, we present the first mathematical model of lung hyperinflammation due to SARS-CoV-2 infection. This model is based on a network of purported mechanistic and physiological pathways linking together five distinct biochemical species involved in the inflammatory response. Simulations of our model give rise to distinct qualitative classes of COVID-19 patients: (i) individuals who naturally clear the virus, (ii) asymptomatic carriers and (iii-v) individuals who develop a case of mild, moderate, or severe illness. These findings, supported by a comprehensive sensitivity analysis, point to potential therapeutic interventions to prevent the emergence of hyperinflammation. Specifically, we suggest that early intervention with a locally acting anti-inflammatory agent (such as inhaled corticosteroids) may effectively blockade the pathological hyperinflammatory reaction as it emerges.


Subject(s)
COVID-19/immunology , COVID-19/physiopathology , Epithelial Cells/immunology , Epithelial Cells/virology , Inflammation/immunology , Lung/physiopathology , Adrenal Cortex Hormones , Cytokines/immunology , Epithelium/immunology , Humans , Lung/pathology , Models, Immunological , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2/pathogenicity
13.
BMJ Open Respir Res ; 7(1)2020 09.
Article in English | MEDLINE | ID: covidwho-767949

ABSTRACT

The SARS-CoV-2 can lead to severe illness with COVID-19. Outcomes of patients requiring mechanical ventilation are poor. Awake proning in COVID-19 improves oxygenation, but on data clinical outcomes is limited. This single-centre retrospective study aimed to assess whether successful awake proning of patients with COVID-19, requiring respiratory support (continuous positive airways pressure (CPAP) or high-flow nasal oxygen (HFNO)) on a respiratory high-dependency unit (HDU), is associated with improved outcomes. HDU care included awake proning by respiratory physiotherapists. Of 565 patients admitted with COVID-19, 71 (12.6%) were managed on the respiratory HDU, with 48 of these (67.6%) requiring respiratory support. Patients managed with CPAP alone 22/48 (45.8%) were significantly less likely to die than patients who required transfer onto HFNO 26/48 (54.2%): CPAP mortality 36.4%; HFNO mortality 69.2%, (p=0.023); however, multivariate analysis demonstrated that increasing age and the inability to awake prone were the only independent predictors of COVID-19 mortality. The mortality of patients with COVID-19 requiring respiratory support is considerable. Data from our cohort managed on HDU show that CPAP and awake proning are possible in a selected population of COVID-19, and may be useful. Further prospective studies are required.


Subject(s)
Continuous Positive Airway Pressure/methods , Coronavirus Infections/therapy , Oxygen Inhalation Therapy/methods , Patient Positioning/methods , Pneumonia, Viral/therapy , Prone Position , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Disease Progression , Female , Humans , Male , Middle Aged , Noninvasive Ventilation/methods , Odds Ratio , Pandemics , Pneumonia, Viral/mortality , Retrospective Studies , SARS-CoV-2 , Treatment Outcome , United Kingdom , Wakefulness
14.
Trials ; 21(1): 718, 2020 Aug 17.
Article in English | MEDLINE | ID: covidwho-717539

ABSTRACT

BACKGROUND: Azithromycin is an orally active synthetic macrolide antibiotic with a wide range of anti-bacterial, anti-inflammatory and antiviral properties. It is a safe, inexpensive, generic licenced drug available worldwide and manufactured to scale and is a potential candidate therapy for pandemic coronavirus disease 2019 (COVID-19). Azithromycin was widely used to treat severe SARS-CoV and MERS-CoV, but to date, no randomised data are available in any coronavirus infections. Other ongoing trials are exploring short courses of azithromycin either in early disease, within the first 7 days of symptoms, when azithromycin's antiviral properties may be important, or late in disease when anti-bacterial properties may reduce the risk of secondary bacterial infection. However, the molecule's anti-inflammatory properties, including suppression of pulmonary macrophage-derived pro-inflammatory cytokines such as interleukins-1ß, -6, -8, and -18 and cytokines G-CSF and GM-CSF may provide a distinct therapeutic benefit if given in as a prolonged course during the period of progression from moderate to severe disease. METHODS: ATOMIC2 is a phase II/III, multi-centre, prospective, open-label, two-arm randomised superiority clinical trial of azithromycin versus standard care for adults presenting to hospital with COVID-19 symptoms who are not admitted at initial presentation. We will enrol adults, ≥ 18 years of age assessed in acute hospitals in the UK with clinical diagnosis of COVID-19 infection where management on an ambulatory care pathway is deemed appropriate. Participants will be randomised in a 1:1 ratio to usual care or to azithromycin 500 mg orally daily for 14 days with telephone follow-up at days 14 and 28. The primary objective is to compare the proportion with either death or respiratory failure requiring invasive or non-invasive mechanical ventilation over 28 days from randomisation. Secondary objectives include mortality/respiratory failure in those with a PCR-confirmed diagnosis; all-cause mortality; progression to pneumonia; progression to severe pneumonia; peak severity of illness and mechanistic analysis of blood and nasal biomarkers. DISCUSSION: This trial will determine the clinical utility of azithromycin in patients with moderately severe, clinically diagnosed COVID-19 and could be rapidly applicable worldwide. TRIAL REGISTRATION: ClinicalTrials.gov NCT04381962 . Registered on 11 May 2020. EudraCT identifier 2020-001740-26 . Opened for accrual on 29 May 2020.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Azithromycin/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , COVID-19 , Humans , Pandemics , Prospective Studies , Research Design , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL