Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Clinical eHealth ; 2022.
Article in English | ScienceDirect | ID: covidwho-1936135

ABSTRACT

Background The outbreak of coronavirus disease 2019 (COVID-19) has become a global pandemic acute infectious disease, especially with the features of possible asymptomatic carriers and high contagiousness. Currently, it is difficult to quickly identify asymptomatic cases or COVID-19 patients with pneumonia due to limited access to reverse transcription-polymerase chain reaction (RT-PCR) nucleic acid tests and CT scans. Goal This study aimed to develop a scientific and rigorous clinical diagnostic tool for the rapid prediction of COVID-19 cases based on a COVID-19 clinical case database in China, and to assist doctors to efficiently and precisely diagnose asymptomatic COVID-19 patients and cases who had a false-negative RT-PCR test result. Methods With online consent, and the approval of the ethics committee of Zhongshan Hospital Fudan University (NCT04275947, B2020-032R) to ensure that patient privacy is protected, clinical information has been uploaded in real-time through the New Coronavirus Intelligent Auto-diagnostic Assistant Application of cloud plus terminal (nCapp) by doctors from different cities (Wuhan, Shanghai, Harbin, Dalian, Wuxi, Qingdao, Rizhao, and Bengbu) during the COVID-19 outbreak in China. By quality control and data anonymization on the platform, a total of 3,249 cases from COVID-19 high-risk groups were collected. The effects of different diagnostic factors were ranked based on the results from a single factor analysis, with 0.05 as the significance level for factor inclusion and 0.1 as the significance level for factor exclusion. Independent variables were selected by the step-forward multivariate logistic regression analysis to obtain the probability model. Findings We applied the statistical method of a multivariate regression model to the training dataset (1,624 cases) and developed a prediction model for COVID-19 with 9 clinical indicators that are accessible. The area under the receiver operating characteristic (ROC) curve (AUC) for the model was 0.88 (95% CI: 0.86, 0.89) in the training dataset and 0.84 (95% CI: 0.82, 0.86) in the validation dataset (1,625 cases). Discussion With the assistance of nCapp, a mobile-based diagnostic tool developed from a large database that we collected from COVID-19 high-risk groups in China, frontline doctors can rapidly identify asymptomatic patients and avoid misdiagnoses of cases with false-negative RT-PCR results.

2.
Clinical eHealth ; 2022.
Article in English | ScienceDirect | ID: covidwho-1926264

ABSTRACT

The metaverse has entered people's horizons through virtual reality, digital twinning, the Internet of Things, blockchain technology, etc. In the current healthcare system, the management of chronic diseases, such as chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea-hypopnea syndrome (OSAHS), still faces challenges, such as uneven distribution of medical resources, and difficulty in follow-up, overburdening of specialists, and so on. However, metaverse medical platforms incorporating advanced AI technologies, such as industrial-scale digital twins, may address these issues. In this article, we discuss the application prospect of these technologies in digital medicine and the future of the medical metaverse.

3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-324114

ABSTRACT

Background: The impact of corticosteroid therapy on outcomes of patients with Coronavirus disease-2019 (COVID-19) is highly controversial. We aimed to compare the risk of death between COVID-19-related ARDS patients with corticosteroid treatment and those without. Methods In this single-centre retrospective observational study, patients with ARDS caused by COVID-19 between 24 December 2019 and 24 February 2020 were enrolled. The primary outcome was 60-day in-hospital death. The exposure was prescribed systemic corticosteroids or not. Time-dependent Cox regression models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for 60-day in-hospital mortality. Results A total of 382 patients including 226 (59.2%) patients who received systemic corticosteroids and 156 (40.8%) patients with standard treatment were analyzed. The maximum dose of corticosteroids was 80.0 (IQR 40.0–80.0) mg equivalent methylprednisolone per day, and duration of corticosteroid treatment was 7.0 (4.0–12.0) days in total. In Cox regression analysis using corticosteroid treatment as a time-varying variable, corticosteroid treatment was associated with a significant reduction in risk of in-hospital death within 60 days (HR, 0.48;95% CI, 0.25, 0.93;p  = 0.0285). The association remained significantly after adjusting for age, sex, Sequential Organ Failure Assessment score at hospital admission, propensity score of corticosteroid treatment, and comorbidities (HR: 0.51;CI: 0.27, 0.99;p  = 0.0471). Corticosteroids were not associated with delayed viral RNA clearance in our cohort. Conclusion In this clinical practice setting, low-to-moderate dose corticosteroid treatment was associated with reduced risk of death in COVID-19 patients who developed ARDS.

4.
Crit Care ; 24(1): 643, 2020 11 10.
Article in English | MEDLINE | ID: covidwho-1067255

ABSTRACT

BACKGROUND: The impact of corticosteroid therapy on outcomes of patients with coronavirus disease 2019 (COVID-19) is highly controversial. We aimed to compare the risk of death between COVID-19-related ARDS patients with corticosteroid treatment and those without. METHODS: In this single-center retrospective observational study, patients with ARDS caused by COVID-19 between January 20, 2020, and February 24, 2020, were enrolled. The primary outcome was 60-day in-hospital death. The exposure was prescribed systemic corticosteroids or not. Time-dependent Cox regression models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for 60-day in-hospital mortality. RESULTS: A total of 382 patients [60.7 ± 14.1 years old (mean ± SD), 61.3% males] were analyzed. The median of sequential organ failure assessment (SOFA) score was 2.0 (IQR 2.0-3.0). Of these cases, 94 (24.6%) patients had invasive mechanical ventilation. The number of patients received systemic corticosteroids was 226 (59.2%), and 156 (40.8%) received standard treatment. The maximum dose of corticosteroids was 80.0 (IQR 40.0-80.0) mg equivalent methylprednisolone per day, and duration of corticosteroid treatment was 7.0 (4.0-12.0) days in total. In Cox regression analysis using corticosteroid treatment as a time-varying variable, corticosteroid treatment was associated with a significant reduction in risk of in-hospital death within 60 days after adjusting for age, sex, SOFA score at hospital admission, propensity score of corticosteroid treatment, comorbidities, antiviral treatment, and respiratory supports (HR 0.42; 95% CI 0.21, 0.85; p = 0.0160). Corticosteroids were not associated with delayed viral RNA clearance in our cohort. CONCLUSION: In this clinical practice setting, low-dose corticosteroid treatment was associated with reduced risk of in-hospital death within 60 days in COVID-19 patients who developed ARDS.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Betacoronavirus , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Pneumonia, Viral/drug therapy , Pneumonia, Viral/mortality , Propensity Score , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/mortality , Aged , COVID-19 , Cohort Studies , Dexamethasone/administration & dosage , Female , Hospitalization/trends , Humans , Male , Methylprednisolone/administration & dosage , Middle Aged , Pandemics , Retrospective Studies , SARS-CoV-2 , Survival Rate/trends
5.
SciFinder; 2020.
Preprint | SciFinder | ID: ppcovidwho-3509

ABSTRACT

A review. In order to better prevent and manage suspected patients of 2019 novel coronavirus 2019 nCoV and avoid secondary infections caused by these potential patients or carriers of the virus, experts from Shanghai Respiratory Clin. Quality Control Center including those assigned to Wuhan specially developed this consensus. This consensus is developed with a special focus on how to do a better job for respiratory clin. quality control and how to do a better job for respiratory clinics during the secondary 2019-nCoV epidemic time. By managing suspected patients through quality control especially by isolating potential sources of infection cutting off all transmission routes and ultimately eliminating cross-infection between physicians and patients, we aimed to eliminate transmission and protect physicians and patients and their families in this special time. The key point of clin. quality control is strict training including familiarity with diagnostic and treatment guidelines self-control including special work clothes and medical masks before serving the patients and eliminating social events and not touching any risks. Doing better job for respiratory clinics requires disinfection and ventilation respiratory physicians should also be prepared to do the necessary before and after-care disinfection and protection. The consultation process requires strict implementation of the guidelines. It is recommended that hospitals equipped with necessary instruments serve patients in their home with internet of things or internet to minimize the possibility of transmission. It is also recommended to minimize unnecessary examinations as much as possible points of paying attention to the patient′s examination and admission precautions are also listed with special circumstances response strategies. In addition special emphasis is needed to consider 2019-nCoV as an infectious disease. Physicians should not miss the patients or virus-carriers and should avoid overlooking of the super-spreaders so as not to cause social harm. When diagnosis and differential diagnosis are difficult attention should be paid to opinions from the chest physicians. For patients who cannot rule out a potential history of exposure, j.e., with related symptoms, imaging shows lung infection, white blood cells are not high, even if the nucleic acid test is neg., they should also be considered have 2019-nCoV pneumonia, or are suspected cases, should be recommended rapid isolation.

6.
Clinical eHealth ; 3:7-15, 2020.
Article in English | PMC | ID: covidwho-822402

ABSTRACT

The aim is to diagnose COVID-19 earlier and to improve its treatment by applying medical technology, the “COVID-19 Intelligent Diagnosis and Treatment Assistant Program (nCapp)” based on the Internet of Things. Terminal eight functions can be implemented in real-time online communication with the “cloud” through the page selection key. According to existing data, questionnaires, and check results, the diagnosis is automatically generated as confirmed, suspected, or suspicious of 2019 novel coronavirus (2019-nCoV) infection. It classifies patients into mild, moderate, severe or critical pneumonia. nCapp can also establish an online COVID-19 real-time update database, and it updates the model of diagnosis in real time based on the latest real-world case data to improve diagnostic accuracy. Additionally, nCapp can guide treatment. Front-line physicians, experts, and managers are linked to perform consultation and prevention. nCapp also contributes to the long-term follow-up of patients with COVID-19. The ultimate goal is to enable different levels of COVID-19 diagnosis and treatment among different doctors from different hospitals to upgrade to the national and international through the intelligent assistance of the nCapp system. In this way, we can block disease transmission, avoid physician infection, and epidemic prevention and control as soon as possible.

7.
Eur Respir Rev ; 29(157)2020 Sep 30.
Article in English | MEDLINE | ID: covidwho-835811

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome-coronavirus-2. Consensus suggestions can standardise care, thereby improving outcomes and facilitating future research. METHODS: An International Task Force was composed and agreement regarding courses of action was measured using the Convergence of Opinion on Recommendations and Evidence (CORE) process. 70% agreement was necessary to make a consensus suggestion. RESULTS: The Task Force made consensus suggestions to treat patients with acute COVID-19 pneumonia with remdesivir and dexamethasone but suggested against hydroxychloroquine except in the context of a clinical trial; these are revisions of prior suggestions resulting from the interim publication of several randomised trials. It also suggested that COVID-19 patients with a venous thromboembolic event be treated with therapeutic anticoagulant therapy for 3 months. The Task Force was unable to reach sufficient agreement to yield consensus suggestions for the post-hospital care of COVID-19 survivors. The Task Force fell one vote shy of suggesting routine screening for depression, anxiety and post-traumatic stress disorder. CONCLUSIONS: The Task Force addressed questions related to pharmacotherapy in patients with COVID-19 and the post-hospital care of survivors, yielding several consensus suggestions. Management options for which there is insufficient agreement to formulate a suggestion represent research priorities.


Subject(s)
Advisory Committees/organization & administration , Betacoronavirus , Consensus , Coronavirus Infections/epidemiology , International Cooperation , Pneumonia, Viral/epidemiology , Pulmonary Medicine/standards , Societies, Medical , COVID-19 , Europe , Humans , Pandemics , SARS-CoV-2 , United States
9.
JAMA Intern Med ; 180(7): 934-943, 2020 07 01.
Article in English | MEDLINE | ID: covidwho-8523

ABSTRACT

Importance: Coronavirus disease 2019 (COVID-19) is an emerging infectious disease that was first reported in Wuhan, China, and has subsequently spread worldwide. Risk factors for the clinical outcomes of COVID-19 pneumonia have not yet been well delineated. Objective: To describe the clinical characteristics and outcomes in patients with COVID-19 pneumonia who developed acute respiratory distress syndrome (ARDS) or died. Design, Setting, and Participants: Retrospective cohort study of 201 patients with confirmed COVID-19 pneumonia admitted to Wuhan Jinyintan Hospital in China between December 25, 2019, and January 26, 2020. The final date of follow-up was February 13, 2020. Exposures: Confirmed COVID-19 pneumonia. Main Outcomes and Measures: The development of ARDS and death. Epidemiological, demographic, clinical, laboratory, management, treatment, and outcome data were also collected and analyzed. Results: Of 201 patients, the median age was 51 years (interquartile range, 43-60 years), and 128 (63.7%) patients were men. Eighty-four patients (41.8%) developed ARDS, and of those 84 patients, 44 (52.4%) died. In those who developed ARDS, compared with those who did not, more patients presented with dyspnea (50 of 84 [59.5%] patients and 30 of 117 [25.6%] patients, respectively [difference, 33.9%; 95% CI, 19.7%-48.1%]) and had comorbidities such as hypertension (23 of 84 [27.4%] patients and 16 of 117 [13.7%] patients, respectively [difference, 13.7%; 95% CI, 1.3%-26.1%]) and diabetes (16 of 84 [19.0%] patients and 6 of 117 [5.1%] patients, respectively [difference, 13.9%; 95% CI, 3.6%-24.2%]). In bivariate Cox regression analysis, risk factors associated with the development of ARDS and progression from ARDS to death included older age (hazard ratio [HR], 3.26; 95% CI 2.08-5.11; and HR, 6.17; 95% CI, 3.26-11.67, respectively), neutrophilia (HR, 1.14; 95% CI, 1.09-1.19; and HR, 1.08; 95% CI, 1.01-1.17, respectively), and organ and coagulation dysfunction (eg, higher lactate dehydrogenase [HR, 1.61; 95% CI, 1.44-1.79; and HR, 1.30; 95% CI, 1.11-1.52, respectively] and D-dimer [HR, 1.03; 95% CI, 1.01-1.04; and HR, 1.02; 95% CI, 1.01-1.04, respectively]). High fever (≥39 °C) was associated with higher likelihood of ARDS development (HR, 1.77; 95% CI, 1.11-2.84) and lower likelihood of death (HR, 0.41; 95% CI, 0.21-0.82). Among patients with ARDS, treatment with methylprednisolone decreased the risk of death (HR, 0.38; 95% CI, 0.20-0.72). Conclusions and Relevance: Older age was associated with greater risk of development of ARDS and death likely owing to less rigorous immune response. Although high fever was associated with the development of ARDS, it was also associated with better outcomes among patients with ARDS. Moreover, treatment with methylprednisolone may be beneficial for patients who develop ARDS.


Subject(s)
Betacoronavirus , Coronavirus Infections/mortality , Critical Illness/mortality , Intensive Care Units/statistics & numerical data , Pneumonia, Viral/mortality , Respiratory Distress Syndrome/mortality , Adult , Age Factors , Aged , COVID-19 , China/epidemiology , Coronavirus Infections/therapy , Female , Humans , Male , Middle Aged , Pandemics , Patient Care Planning/organization & administration , Pneumonia, Viral/therapy , Retrospective Studies , SARS-CoV-2
10.
Clin Transl Med ; 9(1): 19, 2020 Feb 20.
Article in English | MEDLINE | ID: covidwho-1493

ABSTRACT

An ongoing outbreak of 2019-nCoV pneumonia was first identified in Wuhan, Hubei province, China at the end of 2019. With the spread of the new coronavirus accelerating, person-to-person transmission in family homes or hospitals, and intercity spread of 2019-nCoV occurred. At least 40,261 cases confirmed, 23,589 cases suspected, 909 cases death and 3444 cases cured in China and worldwide 24 countries confirmed 383 cases being diagnosed, 1 case death in February 10th, 2020. At present, the mortality of 2019-nCoV in China is 2.3%, compared with 9.6% of SARS and 34.4% of MERS reported by WHO. It seems the new virus is not as fatal as many people thought. Chinese authorities improved surveillance network, made the laboratory be able to recognize the outbreak within a few weeks and announced the virus genome that provide efficient epidemiological control. More comprehensive information is required to understand 2019-nCoV feature, the epidemiology of origin and spreading, and the clinical phenomina. According to the current status, blocking transmission, isolation, protection, and alternative medication are the urgent management strategies against 2019-nCoV.

SELECTION OF CITATIONS
SEARCH DETAIL