Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-322033

ABSTRACT

SARS-CoV-2 infection is associated with increased morbidities in men compared to women. Androgens are believed to play an important role in SARS-CoV-2 pathogenesis in men due to the postulated androgen-dependency of ACE2 and TMPRSS2. However, it is yet unclear whether the sex bias is mediated by SARS-CoV-2 infection itself or by other confounding factors. Here, using the golden hamster model, we show that SARS-CoV-2 infection attacks reproductive organs, causes massive dysregulation of sex hormones and induces elevated transcription of the androgen-to-estrogen converting enzyme aromatase CYP19A1 in the lung. In male hamsters, SARS-CoV-2 infection causes severely depleted testosterone and highly elevated estradiol levels. In female hamsters, SARS-CoV-2 infection causes reduced estradiol levels. Hormonal dysregulation in infected animals is followed by severe weight loss compared to control groups treated with poly(I:C) or PBS. Lungs of SARS-CoV-2 infected animals present abundant CYP19A1 expression in the endothelium and in macrophages, particularly in males. Prominent CYP19A1 expression in endothelial cells and macrophages was verified in lung sections of deceased Covid-19 males compared to females. Our results demonstrate that SARS-CoV-2 infection leads to massive dysregulation of sex hormones, which may increase the risk for sex-specific disease outcome particularly in combination with comorbidities. These findings provide insights into the complex metabolic cross talk between SARS-CoV-2 infection and sex hormones.

2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-320952

ABSTRACT

BACKGROUND Male sex was repeatedly identified as a risk factor for death and intensive care admission. However, it is yet unclear whether sex hormones are associated with disease severity in COVID-19 patients. We sought to characterize sex differences in hormone levels and cytokine responses in critically ill COVID-19 patients. METHODS We performed a retrospective cohort study of critically ill COVID-19 patients. Males and females were compared. Multivariate regression was performed to assess the association between sex hormones, cytokine responses and the requirement for extracorporeal membrane oxygenation (ECMO) treatment. RESULTS We analyzed sex hormone levels (estradiol and testosterone) of n =181 male and female individuals. These consisted of n =50 critically ill COVID-19 patients ( n =39 males, n =11 females), n =42 critically ill non-COVID-19 patients ( n =27 males, n =15 females), n =39 non-COVID-19 patients with coronary heart diseases (CHD) ( n =25 males, n =14 females) and n =50 healthy individuals ( n =30 males, n =20 females). We detected highest estradiol levels in critically ill male COVID-19 patients compared to non-COVID-19 patients ( p =0.0123), patients with CHD ( p =0.0002) or healthy individuals ( p =0.0007). Lowest testosterone levels were detected in critically ill male COVID-19 patients compared to non-COVID-19 patients ( p =0.0094), patients with CHD ( p =0.0068) or healthy individuals ( p <0.0001). No statistically significant differences in sex hormone levels were detected in critically ill female COVID-19 patients, albeit similar trends in estradiol levels were observed. In critically ill male COVID-19 patients, cytokine and chemokine responses (IFN-γ, p =0.0301;IL-1RA, p =0.0160;IL-6, p =0.0145;MCP-1, p =0.0052;MIP-1α, p =0.0134) were significantly elevated in those with higher Sequential Organ Failure Assessment (SOFA) scores (8-11). Linear regression analysis revealed that herein IFN-γ levels correlate with estradiol levels in male and female COVID-19 patients (R 2 =0.216, =0.0009). Male COVID-19 patients with elevated estradiol levels were more likely to receive ECMO treatment in the course of their ICU stay ( p =0.0009). CONCLUSIONS We identified high estradiol and low testosterone levels as a hallmark of critically ill male COVID-19 patients. Elevated estradiol levels in critically ill male COVID-19 patients were positively associated with IFN-γ levels and increased risk for ECMO requirement.

3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-297003

ABSTRACT

Male sex belongs to one of the major risk factors for severe COVID-19 outcome. However, underlying mechanisms that could affect sex dependent disease outcome are yet unknown. Here, we identified the CYP19A1 gene encoding for the testosterone-to-estradiol metabolizing enzyme CYP19A1 (alias aromatase) as a male abundant host factor that contributes to worsened disease outcome in SARS-CoV-2 infected male hamsters. Pulmonary CYP19A1 transcription is further elevated upon viral infection in males correlating with reduced testosterone and increased estradiol levels. Dysregulated circulating sex hormone levels in male golden hamsters are associated with reduced lung function compared to females. Treatment of SARS-CoV-2 infected hamsters with letrozole, a clinically approved CYP19A1 inhibitor, supported recovery of dysregulated plasma sex hormone levels and was associated with improved lung function and health in male but not female animals compared to placebo controls. Whole human exome sequencing data analysis using a Machine Learning approach revealed a CYP19A1 activity increasing mutation being associated with the development of severe COVID-19 for men. In human autopsy-derived lungs CYP19A1 was expressed to higher levels in men who died of COVID-19, at a time point when most viral RNA was cleared. Our findings highlight the role of the lung as a yet unrecognized but critical organ regulating metabolic responses upon respiratory virus infection. Furthermore, inhibition of CYP19A1 by the clinically approved drug letrozole may pose a new therapeutic strategy to reduce poor long-term COVID-19 outcome.

4.
Science ; 373(6557): 918-922, 2021 08 20.
Article in English | MEDLINE | ID: covidwho-1367378

ABSTRACT

Zoonotic avian influenza A virus (IAV) infections are rare. Sustained transmission of these IAVs between humans has not been observed, suggesting a role for host genes. We used whole-genome sequencing to compare avian IAV H7N9 patients with healthy controls and observed a strong association between H7N9 infection and rare, heterozygous single-nucleotide variants in the MX1 gene. MX1 codes for myxovirus resistance protein A (MxA), an interferon-induced antiviral guanosine triphosphatase known to control IAV infections in transgenic mice. Most of the MxA variants identified lost the ability to inhibit avian IAVs, including H7N9, in transfected human cell lines. Nearly all of the inactive MxA variants exerted a dominant-negative effect on the antiviral function of wild-type MxA, suggesting an MxA null phenotype in heterozygous carriers. Our study provides genetic evidence for a crucial role of the MX1-based antiviral defense in controlling zoonotic IAV infections in humans.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human/genetics , Influenza, Human/virology , Myxovirus Resistance Proteins/genetics , Agricultural Workers' Diseases/genetics , Agricultural Workers' Diseases/virology , Animals , Cell Line , Genetic Predisposition to Disease , Genetic Variation , Heterozygote , Humans , Influenza A Virus, H7N9 Subtype/physiology , Influenza A virus/physiology , Mutation, Missense , Myxovirus Resistance Proteins/chemistry , Myxovirus Resistance Proteins/metabolism , Poultry , Viral Zoonoses , Whole Genome Sequencing
5.
Emerg Microbes Infect ; 10(1): 1807-1818, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1360311

ABSTRACT

Male sex was repeatedly identified as a risk factor for death and intensive care admission. However, it is yet unclear whether sex hormones are associated with disease severity in COVID-19 patients. In this study, we analysed sex hormone levels (estradiol and testosterone) of male and female COVID-19 patients (n = 50) admitted to an intensive care unit (ICU) in comparison to control non-COVID-19 patients at the ICU (n = 42), non-COVID-19 patients with the most prevalent comorbidity (coronary heart diseases) present within the COVID-19 cohort (n = 39) and healthy individuals (n = 50). We detected significantly elevated estradiol levels in critically ill male COVID-19 patients compared to all control cohorts. Testosterone levels were significantly reduced in critically ill male COVID-19 patients compared to control cohorts. No statistically significant differences in sex hormone levels were detected in critically ill female COVID-19 patients, albeit similar trends towards elevated estradiol levels were observed. Linear regression analysis revealed that among a broad range of cytokines and chemokines analysed, IFN-γ levels are positively associated with estradiol levels in male and female COVID-19 patients. Furthermore, male COVID-19 patients with elevated estradiol levels were more likely to receive ECMO treatment. Thus, we herein identified that disturbance of sex hormone metabolism might present a hallmark in critically ill male COVID-19 patients.


Subject(s)
COVID-19/mortality , COVID-19/pathology , Estradiol/blood , Testosterone/blood , Aged , Aged, 80 and over , COVID-19/blood , Critical Care , Critical Illness , Extracorporeal Membrane Oxygenation , Female , Humans , Hypogonadism/pathology , Intensive Care Units , Interferon-gamma/blood , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sex Distribution
SELECTION OF CITATIONS
SEARCH DETAIL