Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biotechnol Bioeng ; 2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2278552

ABSTRACT

Analytical characterization of proteins is a critical task for developing therapeutics and subunit vaccine candidates. Assessing candidates with a battery of biophysical assays can inform the selection of one that exhibits properties consistent with a given target product profile (TPP). Such assessments, however, require several milligrams of purified protein, and ideal assessments of the physicochemical attributes of the proteins should not include unnatural modifications like peptide tags for purification. Here, we describe a fast two-stage minimal purification process for recombinant proteins secreted by the yeast host Komagataella phaffii from a 20 mL culture supernatant. This method comprises a buffer exchange and filtration with a Q-membrane filter and we demonstrate sufficient removal of key supernatant impurities including host-cell proteins (HCPs) and DNA with yields of 1-2 mg and >60% purity. This degree of purity enables characterizing the resulting proteins using affinity binding, mass spectrometry, and differential scanning calorimetry. We first evaluated this method to purify an engineered SARS-CoV-2 subunit protein antigen and compared the purified protein to a conventional two-step chromatographic process. We then applied this method to compare several SARS-CoV-2 RBD sequences. Finally, we show this simple process can be applied to a range of other proteins, including a single-domain antibody, a rotavirus protein subunit, and a human growth hormone. This simple and fast developability methodology obviates the need for genetic tagging or full chromatographic development when assessing and comparing early-stage protein therapeutics and vaccine candidates produced in K. phaffii.

2.
Vaccine ; 41(5): 1108-1118, 2023 01 27.
Article in English | MEDLINE | ID: covidwho-2165932

ABSTRACT

There is a continued need for sarbecovirus vaccines that can be manufactured and distributed in low- and middle-income countries (LMICs). Subunit protein vaccines are manufactured at large scales at low costs, have less stringent temperature requirements for distribution in LMICs, and several candidates have shown protection against SARS-CoV-2. We previously reported an engineered variant of the SARS-CoV-2 Spike protein receptor binding domain antigen (RBD-L452K-F490W; RBD-J) with enhanced manufacturability and immunogenicity compared to the ancestral RBD. Here, we report a second-generation engineered RBD antigen (RBD-J6) with two additional mutations to a hydrophobic cryptic epitope in the RBD core, S383D and L518D, that further improved expression titers and biophysical stability. RBD-J6 retained binding affinity to human convalescent sera and to all tested neutralizing antibodies except antibodies that target the class IV epitope on the RBD core. K18-hACE2 transgenic mice immunized with three doses of a Beta variant of RBD-J6 displayed on a virus-like particle (VLP) generated neutralizing antibodies (nAb) to nine SARS-CoV-2 variants of concern at similar levels as two doses of Comirnaty. The vaccinated mice were also protected from challenge with Alpha or Beta SARS-CoV-2. This engineered antigen could be useful for modular RBD-based subunit vaccines to enhance manufacturability and global access, or for further development of variant-specific or broadly acting booster vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , Epitopes/genetics , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Serotherapy , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral , Mice, Transgenic
3.
Hum Vaccin Immunother ; 18(5): 2079346, 2022 11 30.
Article in English | MEDLINE | ID: covidwho-1878720

ABSTRACT

Low-cost, refrigerator-stable COVID-19 vaccines will facilitate global access and improve vaccine coverage in low- and middle-income countries. To this end, subunit-based approaches targeting the receptor-binding domain (RBD) of SARS-CoV-2 Spike protein remain attractive. Antibodies against RBD neutralize SARS-CoV-2 by blocking viral attachment to the host cell receptor, ACE2. Here, a yeast-produced recombinant RBD antigen (RBD-L452K-F490W or RBD-J) was formulated with various combinations of aluminum-salt (Alhydrogel®, AH; AdjuPhos®, AP) and CpG 1018 adjuvants. We assessed the effect of antigen-adjuvant interactions on the stability and mouse immunogenicity of various RBD-J preparations. While RBD-J was 50% adsorbed to AH and <15% to AP, addition of CpG resulted in complete AH binding, yet no improvement in AP adsorption. ACE2 competition ELISA analyses of formulated RBD-J stored at varying temperatures (4, 25, 37°C) revealed that RBD-J was destabilized by AH, an effect exacerbated by CpG. DSC studies demonstrated that aluminum-salt and CpG adjuvants decrease the conformational stability of RBD-J and suggest a direct CpG-RBD-J interaction. Although AH+CpG-adjuvanted RBD-J was the least stable in vitro, the formulation was most potent at eliciting SARS-CoV-2 pseudovirus neutralizing antibodies in mice. In contrast, RBD-J formulated with AP+CpG showed minimal antigen-adjuvant interactions, a better stability profile, but suboptimal immune responses. Interestingly, the loss of in vivo potency associated with heat-stressed RBD-J formulated with AH+CpG after one dose was abrogated by a booster. Our findings highlight the importance of elucidating the key interrelationships between antigen-adjuvant interactions, storage stability, and in vivo performance to enable successful formulation development of stable and efficacious subunit vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Humans , Animals , COVID-19 Vaccines , Aluminum , Angiotensin-Converting Enzyme 2 , COVID-19/prevention & control , Mice, Inbred BALB C , Spike Glycoprotein, Coronavirus , Adjuvants, Immunologic , Antibodies, Viral , Antibodies, Neutralizing
4.
Sci Adv ; 8(11): eabl6015, 2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1745843

ABSTRACT

Authorized vaccines against SARS-CoV-2 remain less available in low- and middle-income countries due to insufficient supply, high costs, and storage requirements. Global immunity could still benefit from new vaccines using widely available, safe adjuvants, such as alum and protein subunits, suited to low-cost production in existing manufacturing facilities. Here, a clinical-stage vaccine candidate comprising a SARS-CoV-2 receptor binding domain-hepatitis B surface antigen virus-like particle elicited protective immunity in cynomolgus macaques. Titers of neutralizing antibodies (>104) induced by this candidate were above the range of protection for other licensed vaccines in nonhuman primates. Including CpG 1018 did not significantly improve the immunological responses. Vaccinated animals challenged with SARS-CoV-2 showed reduced median viral loads in bronchoalveolar lavage (~3.4 log10) and nasal mucosa (~2.9 log10) versus sham controls. These data support the potential benefit of this design for a low-cost modular vaccine platform for SARS-CoV-2 and other variants of concern or betacoronaviruses.

SELECTION OF CITATIONS
SEARCH DETAIL