Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Transpl Int ; 35: 10332, 2022.
Article in English | MEDLINE | ID: covidwho-1933951

ABSTRACT

Infections are leading causes of morbidity/mortality following solid organ transplantation (SOT) and cytomegalovirus (CMV) is among the most frequent pathogens, causing a considerable threat to SOT recipients. A survey was conducted 19 July-31 October 2019 to capture clinical practices about CMV in SOT recipients (e.g., how practices aligned with guidelines, how adequately treatments met patients' needs, and respondents' expectations for future developments). Transplant professionals completed a ∼30-minute online questionnaire: 224 responses were included, representing 160 hospitals and 197 SOT programs (41 countries; 167[83%] European programs). Findings revealed a heterogenous approach to CMV diagnosis and management and, sometimes, significant divergence from international guidelines. Valganciclovir prophylaxis (of variable duration) was administered by 201/224 (90%) respondents in D+/R- SOT and by 40% in R+ cases, with pre-emptive strategies generally reserved for R+ cases: DNA thresholds to initiate treatment ranged across 10-10,000 copies/ml. Ganciclovir-resistant CMV strains were still perceived as major challenges, and tailored treatment was one of the most important unmet needs for CMV management. These findings may help to design studies to evaluate safety and efficacy of new strategies to prevent CMV disease in SOT recipients, and target specific educational activities to harmonize CMV management in this challenging population.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Organ Transplantation , Antiviral Agents/therapeutic use , Cytomegalovirus , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/prevention & control , Ganciclovir/therapeutic use , Humans , Organ Transplantation/adverse effects , Surveys and Questionnaires , Transplant Recipients
2.
Viruses ; 14(7)2022 06 30.
Article in English | MEDLINE | ID: covidwho-1917789

ABSTRACT

COVID-19 convalescent plasma (CCP) has been the only specific anti-viral therapy against SARS-CoV-2 available for more than one year. Following the negative results from most randomized controlled trials on its efficacy in COVID-19 hospitalized patients and the availability of anti-spike monoclonal antibodies (mAbs), the use of CCP has subsequently rapidly faded. However, the continuous appearance of new variants of concern (VOCs), most of which escape mAbs and vaccine-elicited neutralizing antibodies (nAbs), has renewed the interest towards CCP, at least in seronegative immunocompetent patients, and in immunocompromised patients not able to mount a protective immune response. We report here the experience of a single Italian hospital in collecting and transfusing CCP in immunocompromised patients hospitalized for severe COVID-19 between October 2021 and March 2022. During this 6-month period, we collected CCP from 32 vaccinated and convalescent regular blood donors, and infused high nAb-titer CCP units (titered against the specific VOC affecting the recipient) to 21 hospitalized patients with severe COVID-19, all of them seronegative at the time of CCP transfusion. Patients' median age was 66 years (IQR 50-74 years) and approximately half of them (47.6%, 10/21) were immunocompromised. Two patients were rescued after previous failure of mAbs. No adverse reactions following CCP transfusion were recorded. A 28-day mortality rate of 14.3 percent (3/21) was reported, with age, advanced disease stage and late CCP transfusion associated with a worse outcome. This real-life experience also supports the use of CCP in seronegative hospitalized COVID-19 patients during the Delta and Omicron waves.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive/methods
3.
Int J Infect Dis ; 2022 Jul 05.
Article in English | MEDLINE | ID: covidwho-1914483

ABSTRACT

BACKGROUND: Vaccination is the best strategy to contrast coronavirus disease 2019 (COVID-19).We aimed to determine antibodies against SARS-CoV-2 in breastmilk and serum of mothers vaccinated with mRNA vaccine. METHODS: this prospective study included 18 lactating women vaccinated with BNT162b2 vaccine. Serum and breastmilk were collected before the first dose (T0), at second dose (T1), 3 weeks (T2) and 6 months later (T3). Serum anti-SARS-CoV-2 Spike (S) IgG and IgA were measured by a semi-quantitative ELISA, secretory antibody (s) IgG and IgA in breastmilk by a quantitative analysis. RESULTS: we detected serum anti-S IgG and IgA in all women after vaccination. Specific IgG and IgA were higher at T1, T2 and T3 compared to T0 (p<0.0001). Higher antibody levels were observed at T2, lower values were observed at T3 vs T2 (p=0.007). After six months, all patients had serum IgG but 3 out of 18 (16%) had serum IgA. In breastmilk, sIgA were present at T1 and T2 and decreased after six months at T3 (p=0.002). Breastmilk sIgG levels increased at T1 and T2 and peaked at T3 (p=0.008). CONCLUSION: secretory antibodies were transmitted through breastmilk until 6 months after anti COVID-19 mRNA vaccination. Protection of the newborn through breastfeeding need to be addressed.

4.
Int J Infect Dis ; 122: 420-426, 2022 Jun 22.
Article in English | MEDLINE | ID: covidwho-1907178

ABSTRACT

OBJECTIVE: We compared the characteristics and outcomes of vaccinated and nonvaccinated patients hospitalized with COVID-19. DESIGN: We analyzed patients hospitalized in a COVID hub during three one-month periods: (i) October 15, 2020-November 15, 2020 (prevaccination peak); (ii) October 15, 2021-November 15, 2021 (Delta wave); (iii) December 15, 2021-January 15, 2022 (Omicron wave). To define the epidemiologic context, SARS-CoV-2 infection in healthcare workers was analyzed. RESULTS: SARS-CoV-2 infection incidence in healthcare workers was 146 cases per 1000 persons in 2020 (prevaccination) and 67 in 2021 (postvaccination, when the Omicron variant caused most infections). There were 420 hospitalized patients in the prevaccination period, 51 during the Delta wave (52.1% vaccinated) and 165 during the Omicron wave (52.9% vaccinated). During the Delta wave, a significantly higher number of nonvaccinated (29.2%) than vaccinated patients (3.7%) were admitted to the intensive care unit (ICU) (p = 0.019). Nonvaccinated patients were younger and had a lower rate of concomitant medical conditions (53.2% vs 83.7%; p < 0.001) during the Omicron wave when 80% of patients admitted to ICU and all those who died were still infected by the Delta variant. CONCLUSIONS: Vaccine effectiveness in fragile individuals appears to be lower because of a faster immunity decline. However, the Omicron variant seems to cause less severe COVID-19.

5.
Rheumatology (Oxford) ; 2022 Jun 23.
Article in English | MEDLINE | ID: covidwho-1901234

ABSTRACT

OBJECTIVES: To analyse humoral and cellular immune response to messenger RNA (mRNA) COVID-19 vaccines in patients with giant cell arteritis (GCA). METHODS: Consecutive patients with a diagnosis of GCA receiving two doses of BNT162b2 vaccine were assessed at baseline and three weeks from the second vaccine dose. Healthy subjects (n = 51) were included as controls (HC). Humoral response was assessed with Spike-specific IgG antibody response (S-IgG) and neutralising antibodies (NtAb). Specific T cell response was assessed by Enzyme linked immunospot (ELISpot). RESULTS: Of 56 included patients with GCA, 44 were eligible after exclusion of previous evidence of COVID-19 and incomplete follow-up. A significant proportion of patients with GCA (91%) demonstrated antibody (S-IgG) response, however this was significantly lower than HC (100%); p< 0.0001. Neutralising activity was not detected in 16% of patients with GCA. Antibody titres (S-IgG and NtAb) were significantly lower compared with HC. Humoral response (S-IgG and NtAb) was significantly hampered by treatment with methotrexate (MTX). Cellular response was lacking in 30% of patients with GCA (vs 0% in HC); p< 0.0001. Cellular response was significantly influenced by the levels of baseline peripheral T-lymphocytes and by glucocorticoid treatment. Treatment with tocilizumab did not affect any level of the immune response elicited by vaccination. CONCLUSIONS: Although patients with GCA apparently achieve a robust antibody seroconversion, there is a significant impairment of the neutralising activity. MTX significantly reduced all levels of the humoral response. Up to one third of patients do not develop a cellular immune protection in response to COVID-19 vaccination.

6.
Microorganisms ; 10(6):1250, 2022.
Article in English | MDPI | ID: covidwho-1894334

ABSTRACT

We compared the development and persistence of antibody and T-cell responses elicited by the mRNA BNT162b2 vaccine or SARS-CoV-2 infection. We analysed 37 post-COVID-19 patients (15 with pneumonia and 22 with mild symptoms) and 20 vaccinated subjects. Anti-Spike IgG and neutralising antibodies were higher in vaccinated subjects and in patients with pneumonia than in patients with mild COVID-19, and persisted at higher levels in patients with pneumonia while declining in vaccinated subjects. However, the booster dose restored the initial antibody levels. The proliferative CD4+ T-cell response was similar in vaccinated subjects and patients with pneumonia, but was lower in mild COVID-19 patients and persisted in both vaccinated subjects and post-COVID patients. Instead, the proliferative CD8+ T-cell response was lower in vaccinated subjects than in patients with pneumonia, decreased six months after vaccination, and was not restored after the booster dose. The cytokine profile was mainly TH1 in both vaccinated subjects and post-COVID-19 patients. The mRNA BNT162b2 vaccine elicited higher levels of antibody and CD4+ T-cell responses than those observed in mild COVID-19 patients. While the antibody response declined after six months and required a booster dose to be restored at the initial levels, the proliferative CD4+ T-cell response persisted over time.

7.
Diagnostics ; 12(6):1509, 2022.
Article in English | MDPI | ID: covidwho-1893866

ABSTRACT

Since the identification of the new severe acute respiratory syndrome virus 2 (SARS-CoV-2), a huge effort in terms of diagnostic strategies has been deployed. To date, serological assays represent a valuable tool for the identification of recovered COVID-19 patients and for the monitoring of immune response elicited by vaccination. However, the role of T-cell response should be better clarified and simple and easy to perform assays should be routinely introduced. The main aim of this study was to compare a home-made assay for whole blood stimulation with a standardized ELISpot assay design in our laboratory for the assessment of spike-specific T-cell response in vaccinated subjects. Even if a good correlation between the assays was reported, a higher percentage of responder subjects was reported for immunocompromised subjects with ELISpot assay (56%) than home-made whole blood stimulation assay (33%). Additionally, three commercial assays were compared with our home-made assay, reporting a good agreement in terms of both positive and negative results.

8.
Viruses ; 14(6):1326, 2022.
Article in English | MDPI | ID: covidwho-1893857

ABSTRACT

The development of antibody therapies against SARS-CoV-2 remains a challenging task during the ongoing COVID-19 pandemic. All approved therapeutic antibodies are directed against the receptor binding domain (RBD) of the spike, and therefore lose neutralization efficacy against emerging SARS-CoV-2 variants, which frequently mutate in the RBD region. Previously, phage display has been used to identify epitopes of antibody responses against several diseases. Such epitopes have been applied to design vaccines or neutralize antibodies. Here, we constructed an ORFeome phage display library for the SARS-CoV-2 genome. Open reading frames (ORFs) representing the SARS-CoV-2 genome were displayed on the surface of phage particles in order to identify enriched immunogenic epitopes from COVID-19 patients. Library quality was assessed by both NGS and epitope mapping of a monoclonal antibody with a known binding site. The most prominent epitope captured represented parts of the fusion peptide (FP) of the spike. It is associated with the cell entry mechanism of SARS-CoV-2 into the host cell;the serine protease TMPRSS2 cleaves the spike within this sequence. Blocking this mechanism could be a potential target for non-RBD binding therapeutic anti-SARS-CoV-2 antibodies. As mutations within the FP amino acid sequence have been rather rare among SARS-CoV-2 variants so far, this may provide an advantage in the fight against future virus variants.

9.
Vaccines (Basel) ; 10(6)2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-1884445

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has severely impacted on public health, mainly on immunosuppressed patients, including solid organ transplant recipients. Vaccination represents a valuable tool for the prevention of severe SARS-CoV-2 infection, and the immunogenicity of mRNA vaccines has been evaluated in transplanted patients. In this study, we investigated the role of a third dose of the BNT162b2 vaccine in a cohort of kidney transplant recipients, analyzing both humoral and cell-mediated responses. We observed an increased immune response after the third dose of the vaccine, especially in terms of Spike-specific T cell response. The level of seroconversion remained lower than 50% even after the administration of the third dose. Mycophenolate treatment, steroid administration and age seemed to be associated with a poor immune response. In our cohort, 11/45 patients experienced a SARS-CoV-2 infection after the third vaccine dose. HLA antibodies appearance was recorded in 7 out 45 (15.5%) patients, but none of the patients developed acute renal rejection. Further studies for the evaluation of long-term immune responses are still ongoing, and the impact of a fourth dose of the vaccine will be evaluated.

10.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-338324

ABSTRACT

Additional COVID-19 vaccines that are safe, easy to manufacture, and immunogenic are needed for global vaccine equity. Here, we developed a recombinant type 5 adenovirus vector encoding for the SARS-CoV-2-S1 subunit antigen and nucleocapsid as a fusion protein (Ad5.SARS-CoV-2-S1N) delivered to BALB/c mice through multiple vaccine administration routes. A single subcutaneous (S.C.) immunization with Ad5.SARS-CoV-2-S1N induced a similar humoral response, along with a significantly higher S1-specific cellular response, as a recombinant type 5 adenovirus vector encoding for S1 alone (Ad5.SARS-CoV-2-S1). Immunogenicity was improved by homologous prime boost strategies, using either S.C. or intranasal (I.N.) delivery of Ad5.SARS-CoV-2-S1N, and further improved through heterologous prime boost, with traditional intramuscular (I.M.) injection, using subunit recombinant S1 protein. Priming with low dose (1×10 10 v.p.) of Ad5.SARS-CoV-2-S1N and boosting with either wildtype recombinant rS1 or B.1.351 recombinant rS1 induced a robust neutralizing response, that was sustained against immune evasive Beta and Gamma SARS-CoV-2 variants, along with a long-lived plasma cell response in the bone marrow 29 weeks post vaccination. This novel Ad5-vectored SARS-CoV-2 vaccine candidate showed promising immunogenicity in mice and supports the further development of COVID-19 based vaccines incorporating the nucleoprotein as a target antigen.

11.
Clin Infect Dis ; 2022 May 24.
Article in English | MEDLINE | ID: covidwho-1860837

ABSTRACT

BACKGROUND: Patients with solid or hematological tumors, neurological and immune-inflammatory disorders are potentially fragile subjects at increased risk of experiencing severe COVID-19 and an inadequate response to SARS-CoV-2 vaccination. METHODS: We designed a prospective Italian multicentrer study to assess humoral and T-cell responses to SARS-CoV-2 vaccination in patients (n = 378) with solid tumors (ST), hematological malignancies (HM), neurological disorders (ND) and immunorheumatological diseases (ID). A group of healthy controls was also included. We analyzed the immunogenicity of the primary vaccination schedule and booster dose. RESULTS: The overall seroconversion rate in patients after 2 doses was 62.1%. Significantly lower rates were observed in HM (52.4%) and ID (51.9%) than in ST (95.6%) and ND (70.7%); a lower median antibody level was detected in HM and ID versus ST and ND (P < 0.0001). Similar rates of patients with a positive SARS-CoV-2 T-cell response were found in all disease groups, with a higher level observed in ND. The booster dose improved the humoral response in all disease groups, although to a lesser extent in HM patients, while the T-cell response increased similarly in all groups. In the multivariable logistic model, independent predictors of seroconversion were disease subgroup, treatment type and age. Ongoing treatment known to affect the immune system was associated with the worst humoral response to vaccination (P < 0.0001) but had no effect on T-cell responses. CONCLUSIONS: Immunosuppressive treatment more than disease type per se is a risk factor for a low humoral response after vaccination. The booster dose can improve both humoral and T-cell responses.

12.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337784

ABSTRACT

The development of antibody therapies against SARS-CoV-2 remains a challenging task during the ongoing COVID-19 pandemic. All approved therapeutic antibodies are directed against the receptor binding domain (RBD) of Spike and lost neutralization efficacy against continuously emerging SARS-CoV-2 variants, which especially mutate in the RBD region. Previously, phage display has been used to identify epitopes of antibody responses against several diseases. Such epitopes have been applied to design vaccines or neutralizing antibodies. Here, we constructed an ORFeome phage display library for the SARS-CoV-2 genome. Open reading frames (ORFs) representing the SARS-CoV-2 genome were displayed on the surface of phage particles in order to identify enriched immunogenic epitopes from COVID-19 patients. Library quality was assessed by both, NGS and epitope mapping of a monoclonal antibody with known binding site. The most prominent epitope captured represented parts of Spike´s fusion peptide (FP). It is associated with the cell entry mechanism of SARS-CoV-2 into the host cell and the serine protease TMPRSS2 cleaves Spike within this sequence. Blocking of this mechanism could be a potential target for non-RBD binding therapeutic anti-SARS-CoV-2 antibodies. As mutations within the FP amino acid sequence were rather rare among SARS-CoV-2 variants so far, this may be an advantage in the fight against future virus variants.

13.
Virus Res ; 315: 198786, 2022 Jul 02.
Article in English | MEDLINE | ID: covidwho-1852223

ABSTRACT

Studies are needed to better understand the genomic evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aimed to describe viral quasispecies population of upper and lower respiratory tract by next-generation sequencing in patients admitted to intensive care unit. A deep sequencing of the S gene of SARS-CoV-2 from 109 clinical specimens, sampled from the upper respiratory tract (URT) and lower respiratory tract (LRT) of 77 patients was performed. A higher incidence of non-synonymous mutations and indels was observed in the LRT among minority variants. This might be explained by the ability of the virus to invade cells without interacting with ACE2 (e.g. exploiting macrophage phagocytosis). Minority variants are highly concentrated around the gene portion encoding for the Spike cleavage site, with a higher incidence in the URT; four mutations are highly recurring among samples and were found associated with the URT. Interestingly, 55.8% of minority variants detected in this locus were T>G and G>T transversions. Results from this study evidenced the presence of selective pressure and suggest that an evolutionary process is still ongoing in one of the crucial sites of spike protein associated with the spillover to humans.


Subject(s)
COVID-19 , SARS-CoV-2 , High-Throughput Nucleotide Sequencing , Humans , Quasispecies , Respiratory System , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
14.
Pediatr Allergy Immunol ; 33 Suppl 27: 93-95, 2022 01.
Article in English | MEDLINE | ID: covidwho-1840512

ABSTRACT

The pediatric population seems to be at a lower risk of developing severe clinical symptoms of COVID-19. However, the clinical and epidemiological characteristics of COVID-19 in children are yet to be fully clarified. This retrospective observational study aimed to evaluate the frequency of pediatric laboratory-confirmed COVID-19 patients from February 2020 to April 2021. A total of 740 (5.1% of total) pediatric COVID-19 cases were observed during the study period. The peak of pediatric cases was observed in November 2020, with 239 cases. During the first wave of pandemics, the frequency of pediatric cases was 0.89% (49/5877 cases), ranging from 0.6% in February 2020 to 1.3% in April 2020. On the contrary, after the beginning of the second wave, the frequency of pediatric cases raised from 5.3% in September 2020 to 9.4%in February 2021, with an overall frequency of 8.2% (690/8416 cases). A different rate of SARS-CoV-2 circulation was observed among the pediatric population between the pandemic waves. During the second wave, two peaks of cases were observed. The last peak was associated with the spread of a more transmissive SARS-CoV-2 strain (VOC 202012/01).


Subject(s)
COVID-19 , Pandemics , Child , Humans , Retrospective Studies , SARS-CoV-2
15.
Pediatr Allergy Immunol ; 33 Suppl 27: 89-92, 2022 01.
Article in English | MEDLINE | ID: covidwho-1840511

ABSTRACT

During the early phase of the pandemic (20 February-4 April 2020), we have investigated the temporal and geographical evolution of the virus in Lombardy showing the circulation of at least seven lineages distributed differently in the Region. In the present study, the molecular epidemiology of SARS-CoV-2 was monitored in a period between two pandemic waves in order to track the circulation of new variants (April-August 2020). A great majority of SARS-CoV-2 strains (70.8%) belonged to lineages B, B.1, B.1.1 and B.1.1.1, and five strains belonging to four lineages were already reported in Italy (B.1.1.148, B.1.1.162, B.1.1.71, and B.1.425). In addition, 21 SARS-CoV-2 strains belonged to six lineages not previously observed in Italy were detected. No variants of concern were observed. A total of 152/1274 (11.3%) amino acid changes were observed among spike gene sequences and only 26/152 (17.1%) occurred in the receptor-binding domain region of the spike protein. Results of this study are indicative of ongoing transmission throughout the lockdown period, rather than re-introduction of novel lineages past lockdown. The use of molecular epidemiology in Italy should be promoted in order to provide additional understanding of the transmission of the disease and to have major effect on controlling the spread of disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Communicable Disease Control , Humans , Italy/epidemiology , Pandemics , Phylogeny
16.
Leukemia ; 36(6): 1467-1480, 2022 06.
Article in English | MEDLINE | ID: covidwho-1830027

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel virus that spread worldwide from 2019 causing the Coronavirus disease 19 (COVID-19) pandemic. SARS-CoV-2 infection is characterised by an initial viral phase followed in some patients by a severe inflammatory phase. Importantly, immunocompromised patients may have a prolonged viral phase, shedding infectious viral particles for months, and absent or dysfunctional inflammatory phase. Among haematological patients, COVID-19 has been associated with high mortality rate in acute leukaemia, high risk-myelodysplastic syndromes, and after haematopoietic cell transplant and chimeric-antigen-receptor-T therapies. The clinical symptoms and signs were similar to that reported for the overall population, but the severity and outcome were worse. The deferral of immunodepleting cellular therapy treatments is recommended for SARS-CoV-2 positive patient, while in the other at-risk cases, the haematological treatment decisions must be weighed between individual risks and benefits. The gold standard for the diagnosis is the detection of viral RNA by nucleic acid testing on nasopharyngeal-swabbed sample, which provides high sensitivity and specificity; while rapid antigen tests have a lower sensitivity, especially in asymptomatic patients. The prevention of SARS-CoV-2 infection is based on strict infection control measures recommended for aerosol-droplet-and-contact transmission. Vaccinations against SARS-CoV-2 has shown high efficacy in reducing community transmission, hospitalisation and deaths due to severe COVID-19 disease in the general population, but immunosuppressed/haematology patients may have lower sero-responsiveness to vaccinations. Moreover, the recent emergence of new variants may require vaccine modifications and strategies to improve efficacy in these vulnerable patients. Beyond supportive care, the specific treatment is directed at viral replication control (antivirals, anti-spike monoclonal antibodies) and, in patients who need it, to the control of inflammation (dexamethasone, anti-Il-6 agents, and others). However, the benefit of all these various prophylactic and therapeutic treatments in haematology patients deserves further studies.


Subject(s)
COVID-19 , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Leukemia , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , SARS-CoV-2
17.
Vaccines (Basel) ; 10(5)2022 Apr 29.
Article in English | MEDLINE | ID: covidwho-1820440

ABSTRACT

SARS-CoV-2 still represents a global health burden, causing more than six million deaths worldwide. Moreover, the emergence of new variants has posed new issues in terms of vaccine efficacy and immunogenicity. In this study, we aimed to evaluate the neutralizing antibody response against SARS-CoV-2 variants in different cohorts of vaccinated and unvaccinated subjects. Four-fold diluted sera from SARS-CoV-2 naïve and recovered subjects vaccinated with two or three doses of the BNT162b2 vaccine were challenged against 14 SARS-CoV-2 variants, and the SARS-CoV-2 neutralizing antibody titer was measured. Results were compared with those obtained from unvaccinated COVID-19 recovered patients. Overall, a better SARS-CoV-2 NT Abs response was observed in recovered vaccinated subjects after three doses of the vaccine when compared to unvaccinated patients and vaccinated subjects with only two doses. Additionally, the lowest level of response was observed against the Omicron variant. In conclusion, third doses of BNT162b2 vaccine seems to elicit a sustained response against the large majority of variants.

19.
Transfusion ; 62(6): 1171-1176, 2022 06.
Article in English | MEDLINE | ID: covidwho-1794552

ABSTRACT

BACKGROUND: Novel SARS-CoV-2 variants of concern (VOC) Delta and Omicron are able to escape some monoclonal antibody therapies, making again COVID-19 convalescent plasma (CCP) a potential frontline treatment. STUDY DESIGN/METHODS: In this study, we investigated the kinetics of anti-SARS-CoV-2 neutralizing antibodies (nAbs) against VOCs Delta and Omicron in vaccine breakthrough infected plasma donors. Serum samples from 19 donors were collected at the time of plasma donation and tested for anti-SARS-CoV-2 nAbs (using live authentic VOC viral neutralization test) and IgG (Liaison® SARS-CoV-2 S1/S2 and Liaison® SARS-CoV-2 TrimericS IgG assays, DiaSorin). Measures were correlated with different variables, including the time between last vaccine dose and CCP donation, and time between SARS-COV-2 infection and CCP donation. RESULTS: nAb titers against VOC Delta and Omicron were directly related to the time interval since last vaccine dose to CCP donation, but inversely related to time since COVID19 breakthrough infection. DISCUSSION: SARS-CoV-2 breakthrough infection in vaccinated in donors boosts nAb titers against VOCs Delta and Omicron, but such titers decay shortly after infection. Therefore, CCP must be collected early after vaccine breakthrough infection.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , Blood Donors , COVID-19/prevention & control , COVID-19/therapy , Humans , Immunization, Passive , Immunoglobulin G , Neutralization Tests , SARS-CoV-2
20.
Front Oncol ; 12: 855723, 2022.
Article in English | MEDLINE | ID: covidwho-1775732

ABSTRACT

Background: Frail patients are considered at relevant risk of complications due to coronavirus disease 2019 (COVID-19) infection and, for this reason, are prioritized candidates for vaccination. As these patients were originally not included in the registration trials, fear related to vaccine adverse events and disease worsening was one of the reasons for vaccine hesitancy. Herein, we report the safety profile of the prospective, multicenter, national VAX4FRAIL study (NCT04848493) to evaluate vaccines in a large trans-disease cohort of patients with solid or hematological malignancies and neurological and rheumatological diseases. Methods: Between March 3 and September 2, 2021, 566 patients were evaluable for safety endpoint: 105 received the mRNA-1273 vaccine and 461 the BNT162b2 vaccine. Frail patients were defined per protocol as patients under treatment with hematological malignancies (n = 131), solid tumors (n = 191), immune-rheumatological diseases (n = 86), and neurological diseases (n = 158), including multiple sclerosis and generalized myasthenia. The impact of the vaccination on the health status of patients was assessed through a questionnaire focused on the first week after each vaccine dose. Results: The most frequently reported moderate-severe adverse events were pain at the injection site (60.3% after the first dose, 55.4% after the second), fatigue (30.1%-41.7%), bone pain (27.4%-27.2%), and headache (11.8%-18.9%). Risk factors associated with the occurrence of severe symptoms after vaccine administration were identified through a multivariate logistic regression analysis: age was associated with severe fever presentation (younger patients vs. middle-aged vs. older ones), female individuals presented a higher probability of severe pain at the injection site, fatigue, headache, and bone pain; and the mRNA-1237 vaccine was associated with a higher probability of severe pain at the injection site and fever. After the first dose, patients presenting a severe symptom were at a relevant risk of recurrence of the same severe symptom after the second one. Overall, 11 patients (1.9%) after the first dose and 7 (1.2%) after the second one required postponement or suspension of the disease-specific treatment. Finally, two fatal events occurred among our 566 patients. These two events were considered unrelated to the vaccine. Conclusions: Our study reports that mRNA-COVID-19 vaccination is safe also in frail patients; as expected, side effects were manageable and had a minimum impact on patient care path.

SELECTION OF CITATIONS
SEARCH DETAIL