Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Eur Rev Med Pharmacol Sci ; 25(19): 5904-5912, 2021 10.
Article in English | MEDLINE | ID: covidwho-1478932


OBJECTIVE: Liver injury has been reported in patients with COVID-19. This condition is characterized by severe outcome and could be related with the ability of SARS-CoV-2 to activate cytotoxic T cells. The purpose of this study is to show the histological and scanning electron microscopy features of liver involvement in COVID-19 to characterize the liver changes caused by the activation of multiple molecular pathways following this infection. PATIENTS AND METHODS: Liver biopsies from 4 patients (3 post-mortems and 1 in vivo) with COVID-19 were analyzed with histology and by scanning electron microscopy. RESULTS: The liver changes showed significant heterogeneity. The first case showed ground glass hepatocytes and scattered fibrin aggregates in the sinusoidal lumen. The second evidenced intra-sinusoidal thrombi. The third was characterized by sinusoidal dilatation, atrophy of hepatocytes, Disse's spaces dilatation and intra-sinusoidal aggregates of fibrin and red blood cells. The fourth case exhibited diffuse fibrin aggregates in the dilated Disse spaces and microthrombi in the sinusoidal lumen. CONCLUSIONS: In COVID-19-related liver injury, a large spectrum of pathological changes was observed. The most peculiar features were very mild inflammation, intra-sinusoidal changes, including sinusoidal dilatation, thrombotic sinusoiditis and diffuse intra-sinusoidal fibrin deposition. These findings suggested that a thrombotic sinusoiditis followed by a local diffuse intra-vascular (intra-sinusoidal) coagulation could be the typical features of the SARS-CoV-2-related liver injury.

Blood Coagulation Disorders/pathology , COVID-19/pathology , Liver Diseases/pathology , Liver/pathology , Thrombosis/pathology , Aged , Autopsy , Biopsy , Erythrocytes/pathology , Fibrin , Hepatocytes/pathology , Humans , Male , Microscopy, Electron, Scanning , Middle Aged , Thrombosis/complications , Young Adult
Radiology: Cardiothoracic Imaging ; 2(4), 2020.
Article in English | Scopus | ID: covidwho-1366060
Eur Rev Med Pharmacol Sci ; 25(10): 3772-3790, 2021 05.
Article in English | MEDLINE | ID: covidwho-1264762


Multiple epidemiological studies have suggested that industrialization and progressive urbanization should be considered one of the main factors responsible for the rising of atherosclerosis in the developing world. In this scenario, the role of trace metals in the insurgence and progression of atherosclerosis has not been clarified yet. In this paper, the specific role of selected trace elements (magnesium, zinc, selenium, iron, copper, phosphorus, and calcium) is described by focusing on the atherosclerotic prevention and pathogenesis plaque. For each element, the following data are reported: daily intake, serum levels, intra/extracellular distribution, major roles in physiology, main effects of high and low levels, specific roles in atherosclerosis, possible interactions with other trace elements, and possible influences on plaque development. For each trace element, the correlations between its levels and clinical severity and outcome of COVID-19 are discussed. Moreover, the role of matrix metalloproteinases, a family of zinc-dependent endopeptidases, as a new medical therapeutical approach to atherosclerosis is discussed. Data suggest that trace element status may influence both atherosclerosis insurgence and plaque evolution toward a stable or an unstable status. However, significant variability in the action of these traces is evident: some - including magnesium, zinc, and selenium - may have a protective role, whereas others, including iron and copper, probably have a multi-faceted and more complex role in the pathogenesis of the atherosclerotic plaque. Finally, calcium and phosphorus are implicated in the calcification of atherosclerotic plaques and in the progression of the plaque toward rupture and severe clinical complications. In particular, the role of calcium is debated. Focusing on the COVID-19 pandemia, optimized magnesium and zinc levels are indicated as important protective tools against a severe clinical course of the disease, often related to the ability of SARS-CoV-2 to cause a systemic inflammatory response, able to transform a stable plaque into an unstable one, with severe clinical complications.

Atherosclerosis/pathology , Trace Elements/metabolism , Atherosclerosis/metabolism , COVID-19/pathology , COVID-19/virology , Calcium/blood , Calcium/metabolism , Copper/blood , Copper/metabolism , Humans , Iron/blood , Iron/metabolism , Magnesium/blood , Magnesium/metabolism , Matrix Metalloproteinases/metabolism , Phosphorus/blood , Phosphorus/metabolism , Risk , SARS-CoV-2/isolation & purification , Selenium/blood , Selenium/metabolism , Severity of Illness Index , Trace Elements/blood , Zinc/blood , Zinc/metabolism
Eur Rev Med Pharmacol Sci ; 24(23): 12609-12622, 2020 12.
Article in English | MEDLINE | ID: covidwho-995022


OBJECTIVE: In human pathology, SARS-CoV-2 utilizes multiple molecular pathways to determine structural and biochemical changes within the different organs and cell types. The clinical picture of patients with COVID-19 is characterized by a very large spectrum. The reason for this variability has not been clarified yet, causing the inability to make a prognosis on the evolution of the disease. MATERIALS AND METHODS: PubMed search was performed focusing on the role of ACE 2 receptors in allowing the viral entry into cells, the role of ACE 2 downregulation in triggering the tissue pathology or in accelerating previous disease states, the role of increased levels of Angiotensin II in determining endothelial dysfunction and the enhanced vascular permeability, the role of the dysregulation of the renin angiotensin system in COVID-19 and the role of cytokine storm. RESULTS: The pathological changes induced by SARS-CoV-2 infection in the different organs, the correlations between the single cell types targeted by the virus in the different human organs and the clinical consequences, COVID-19 chronic pathologies in liver fibrosis, cardiac fibrosis and atrial arrhythmias, glomerulosclerosis and pulmonary fibrosis, due to the systemic fibroblast activation induced by angiotensin II are discussed. CONCLUSIONS: The main pathways involved showed different pathological changes in multiple tissues and the different clinical presentations. Even if ACE2 is the main receptor of SARS-CoV-2 and the main entry point into cells for the virus, ACE2 expression does not always explain the observed marked inter-individual variability in clinical presentation and outcome, evidencing the complexity of this disorder. The proper interpretation of the growing data available might allow to better classifying COVID-19 in human pathology.

Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Cardiomyopathies/metabolism , Cytokine Release Syndrome/metabolism , Endothelium, Vascular/physiopathology , Liver Cirrhosis/metabolism , Systemic Inflammatory Response Syndrome/metabolism , Thrombosis/metabolism , Angiotensin I/metabolism , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Blood Coagulation , COVID-19/pathology , COVID-19/physiopathology , Capillary Permeability , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Cytokine Release Syndrome/physiopathology , Cytokines/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Humans , Liver Cirrhosis/pathology , Liver Cirrhosis/physiopathology , Myocarditis/metabolism , Myocarditis/pathology , Myocarditis/physiopathology , Receptors, Coronavirus/metabolism , Renin-Angiotensin System , SARS-CoV-2/metabolism , Systemic Inflammatory Response Syndrome/physiopathology , Thrombosis/physiopathology , Virus Internalization