Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1442406

ABSTRACT

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Base Sequence , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interferon-alpha/blood , Pulmonary Fibrosis/pathology , RNA-Seq , Severity of Illness Index , Transcriptome/genetics , United Kingdom , United States
3.
Nat Commun ; 12(1): 1931, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1152851

ABSTRACT

The COVID-19 pandemic continues to have an unprecedented impact on societies and economies worldwide. There remains an ongoing need for high-performance SARS-CoV-2 tests which may be broadly deployed for infection monitoring. Here we report a highly sensitive single molecule array (Simoa) immunoassay in development for detection of SARS-CoV-2 nucleocapsid protein (N-protein) in venous and capillary blood and saliva. In all matrices in the studies conducted to date we observe >98% negative percent agreement and >90% positive percent agreement with molecular testing for days 1-7 in symptomatic, asymptomatic, and pre-symptomatic PCR+ individuals. N-protein load decreases as anti-SARS-CoV-2 spike-IgG increases, and N-protein levels correlate with RT-PCR Ct-values in saliva, and between matched saliva and capillary blood samples. This Simoa SARS-CoV-2 N-protein assay effectively detects SARS-CoV-2 infection via measurement of antigen levels in blood or saliva, using non-invasive, swab-independent collection methods, offering potential for at home and point of care sample collection.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/blood , SARS-CoV-2/metabolism , Saliva/virology , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Epidemics , Home Care Services , Humans , Point-of-Care Systems , ROC Curve , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL