Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Infect Dis Ther ; 11(3): 1149-1160, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1783017

ABSTRACT

INTRODUCTION: Candida auris (C. auris) is an emerging nosocomial pathogen, and a sharp rise in cases of colonization and infection has been registered in intensive care units (ICUs) during the ongoing coronavirus disease 2019 (COVID-19) pandemic. The unfavorable resistance profile of C. auris and the potential high mortality of C. auris infections represent an important challenge for physicians. METHODS: We conducted a single-center retrospective study including all patients admitted to ICUs with isolation of C. auris in any non-sterile body site between February 20, 2020, and May 31, 2021. The primary aim of the study was to assess the cumulative incidence of C. auris candidemia in colonized patients. The secondary aim was to identify predictors of C. auris candidemia in the study population. RESULTS: During the study period, 157 patients admitted to ICUs in our hospital became colonized with C. auris; 59% of them were affected by COVID-19. Overall, 27 patients (17%) developed C. auris candidemia. The cumulative risk of developing C. auris candidemia was > 25% at 60 days after first detection of C. auris colonization. Seven patients with C. auris candidemia (26%) also developed a late recurrent episode. All C. auris blood isolates during the first occurring episode were resistant to fluconazole and susceptible to echinocandins, while 15 (56%) were resistant to amphotericin B. During late recurrent episodes, emergent resistance to caspofungin and amphotericin B occurred in one case each. In the final multivariable model, only multisite colonization retained an independent association with the development of C. auris candidemia. CONCLUSION: Candida auris candidemia may occur in up to one fourth of colonized critically ill patients, and multisite colonization is an independent risk factor for the development of candidemia. Implementing adequate infection control measures remains crucial to prevent colonization with C. auris and indirectly the subsequent development of infection.

2.
Front Med (Lausanne) ; 9: 823837, 2022.
Article in English | MEDLINE | ID: covidwho-1775695

ABSTRACT

Background: Several cases of adverse reactions following vaccination for coronavirus disease 2019 (COVID-19) with adenoviral vector vaccines or mRNA-based vaccines have been reported to date. The underlying syndrome has been named "vaccine-induced immune thrombotic thrombocytopenia" (VITT) or "thrombosis with thrombocytopenia syndrome (TTS)" with different clinical manifestations. Methods: We report the clinical course of five patients who had severe adverse reactions to COVID-19 vaccines, either with VITT/TTS, abdominal or pulmonary thrombosis after adenoviral vaccines, or Stevens' Johnson syndrome because of mRNA vaccination, all of whom required admission to the intensive care unit (ICU). Conclusions: All patients with severe or life-threatening suspected reaction to different types of COVID-19 vaccination required ICU admission. A prompt evaluation of early symptoms and individualized clinical management is needed to improve outcomes.

3.
Expert Rev Respir Med ; 16(4): 437-446, 2022 04.
Article in English | MEDLINE | ID: covidwho-1764445

ABSTRACT

INTRODUCTION: Typical acute respiratory distress syndrome (ARDS) and severe coronavirus-19 (COVID-19) pneumonia share complex pathophysiology, a high mortality rate, and an unmet need for efficient therapeutics. AREAS COVERED: This review discusses the current advances in understanding the pathophysiologic mechanisms underlying typical ARDS and severe COVID-19 pneumonia, highlighting specific aspects of COVID-19-related acute hypoxemic respiratory failure that require attention. Two models have been proposed to describe the mechanisms of respiratory failure associated with typical ARDS and severe COVID-19 pneumonia. EXPERT OPINION: ARDS is defined as a syndrome rather than a distinct pathologic entity. There is great heterogeneity regarding the pathophysiologic, clinical, radiologic, and biological phenotypes in patients with ARDS, challenging clinicians, and scientists to discover new therapies. COVID-19 has been described as a cause of pulmonary ARDS and has reopened many questions regarding the pathophysiology of ARDS itself. COVID-19 lung injury involves direct viral epithelial cell damage and thrombotic and inflammatory reactions. There are some differences between ARDS and COVID-19 lung injury in aspects of aeration distribution, perfusion, and pulmonary vascular responses.


Subject(s)
COVID-19 , Lung Injury , Respiratory Distress Syndrome , Respiratory Insufficiency , COVID-19/complications , Humans , Lung/pathology , Respiratory Distress Syndrome/therapy , SARS-CoV-2
4.
Virchows Arch ; 480(5): 967-977, 2022 May.
Article in English | MEDLINE | ID: covidwho-1748491

ABSTRACT

Ultrastructural analysis of autopsy samples from COVID-19 patients usually suffers from significant structural impairment possibly caused by the rather long latency between death of the patient and an appropriate sample fixation. To improve structural preservation of the tissue, we obtained samples from ventilated patients using a trans-bronchial "cryobiopsy" within 30 min after their death and fixed them immediately for electron microscopy. Samples of six COVID-19 patients with a documented histopathology were systematically investigated by thin section electron microscopy. The different samples and areas inspected revealed the ultrastructural correlates of the different phases of diffuse alveolar damage, including detachment of the alveolar epithelium, hyperplasia of type 2 cells, exudates, and accumulation of extracellular material, such as the hyaline membranes and fibrin. Macrophages and neutrophilic granulocytes were regularly detected. Structural integrity of endothelium was intact in regions where the alveolar epithelium was already detached. Aggregates of erythrocytes, leukocytes with fibrin, and thrombocytes were not observed. Coronavirus particles were only found in and around very few cells in one of the six patient samples. The type and origin of these cells could not be assessed although the overall structural preservation of the samples allowed the identification of pulmonary cell types. Hence, the observed alveolar damage is not associated with virus presence or structural impairment due to ongoing replication at later stages of the disease in fatal cases, which implies that the lung damage in these patients is at least propagated by alternative mechanisms, perhaps, an inappropriate immune or stress response.


Subject(s)
COVID-19 , Lung , Autopsy , COVID-19/pathology , Fibrin , Humans , Lung/pathology , Lung/ultrastructure , SARS-CoV-2
5.
Respir Physiol Neurobiol ; 301: 103889, 2022 07.
Article in English | MEDLINE | ID: covidwho-1747608

ABSTRACT

PURPOSE: To describe the effects of timing of intubation in COVID-19 patients that fail helmet continuous positive airway pressure (h-CPAP) on progression and severity of disease. METHODS: COVID-19 patients that failed h-CPAP, required intubation, and underwent chest computed tomography (CT) at two levels of positive end-expiratory pressure (PEEP, 8 and 16 cmH2O) were included in this retrospective study. Patients were divided in two groups (early versus late) based on the duration of h-CPAP before intubation. Endpoints included percentage of non-aerated lung tissue at PEEP of 8 cmH2O, respiratory system compliance and oxygenation. RESULTS: Fifty-two patients were included and classified in early (h-CPAP for ≤2 days, N = 26) and late groups (h-CPAP for >2 days, N = 26). Patients in the late compared to early intubation group presented: 1) lower respiratory system compliance (median difference, MD -7 mL/cmH2O, p = 0.044) and PaO2/FiO2 (MD -29 mmHg, p = 0.047), 2) higher percentage of non-aerated lung tissue (MD 7.2%, p = 0.023) and 3) similar lung recruitment increasing PEEP from 8 to 16 cmH2O (MD 0.1%, p = 0.964). CONCLUSIONS: In COVID-19 patients receiving h-CPAP, late intubation was associated with worse clinical presentation at ICU admission and more advanced disease. The possible detrimental effects of delaying intubation should be carefully considered in these patients.


Subject(s)
COVID-19 , Continuous Positive Airway Pressure , COVID-19/therapy , Humans , Intubation, Intratracheal , Retrospective Studies , Tomography, X-Ray Computed
6.
Front Physiol ; 12: 725865, 2021.
Article in English | MEDLINE | ID: covidwho-1703959

ABSTRACT

BACKGROUND: Identification of lung parenchyma on computer tomographic (CT) scans in the research setting is done semi-automatically and requires cumbersome manual correction. This is especially true in pathological conditions, hindering the clinical application of aeration compartment (AC) analysis. Deep learning based algorithms have lately been shown to be reliable and time-efficient in segmenting pathologic lungs. In this contribution, we thus propose a novel 3D transfer learning based approach to quantify lung volumes, aeration compartments and lung recruitability. METHODS: Two convolutional neural networks developed for biomedical image segmentation (uNet), with different resolutions and fields of view, were implemented using Matlab. Training and evaluation was done on 180 scans of 18 pigs in experimental ARDS (u2Net Pig ) and on a clinical data set of 150 scans from 58 ICU patients with lung conditions varying from healthy, to COPD, to ARDS and COVID-19 (u2Net Human ). One manual segmentations (MS) was available for each scan, being a consensus by two experts. Transfer learning was then applied to train u2Net Pig on the clinical data set generating u2Net Transfer . General segmentation quality was quantified using the Jaccard index (JI) and the Boundary Function score (BF). The slope between JI or BF and relative volume of non-aerated compartment (S JI and S BF , respectively) was calculated over data sets to assess robustness toward non-aerated lung regions. Additionally, the relative volume of ACs and lung volumes (LV) were compared between automatic and MS. RESULTS: On the experimental data set, u2Net Pig resulted in JI = 0.892 [0.88 : 091] (median [inter-quartile range]), BF = 0.995 [0.98 : 1.0] and slopes S JI = -0.2 {95% conf. int. -0.23 : -0.16} and S BF = -0.1 {-0.5 : -0.06}. u2Net Human showed similar performance compared to u2Net Pig in JI, BF but with reduced robustness S JI = -0.29 {-0.36 : -0.22} and S BF = -0.43 {-0.54 : -0.31}. Transfer learning improved overall JI = 0.92 [0.88 : 0.94], P < 0.001, but reduced robustness S JI = -0.46 {-0.52 : -0.40}, and affected neither BF = 0.96 [0.91 : 0.98] nor S BF = -0.48 {-0.59 : -0.36}. u2Net Transfer improved JI compared to u2Net Human in segmenting healthy (P = 0.008), ARDS (P < 0.001) and COPD (P = 0.004) patients but not in COVID-19 patients (P = 0.298). ACs and LV determined using u2Net Transfer segmentations exhibited < 5% volume difference compared to MS. CONCLUSION: Compared to manual segmentations, automatic uNet based 3D lung segmentation provides acceptable quality for both clinical and scientific purposes in the quantification of lung volumes, aeration compartments, and recruitability.

7.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-309368

ABSTRACT

Background: To describe the cellular characteristics of bronchoalveolar lavage fluid (BALF) of critically ill COVID-19 patients requiring invasive mechanical ventilation;the secondary outcome is to describe BALF findings between survivors vs non-survivors. Materials and Methods Patients positive for SARS-CoV-2 RT PCR, admitted to ICU between March and April 2020 were enrolled. At ICU admission, BALF were analyzed by flow cytometry. Univariate, multivariate and Spearman correlation analyses were performed. Results Sixty-four patients were enrolled, median age of 64 years (IQR 58–69). The majority cells in the BALF were neutrophils (70%, IQR 37.5–90.5) and macrophages (27%, IQR 7–49) while a minority were lymphocytes, 1%, TCD3 + 92% (IQR 82–95). The ICU mortality was 32.8%. Non-survivors had a significantly older age (p = 0.033) and peripheral lymphocytes (p = 0.012) were lower compared to the survivors. At multivariate analysis the percentage of macrophages in the BALF correlated with poor outcome (OR 1.336, CI95% 1.014–1.759, p = 0.039). Conclusions In critically ill patients, BALF cellularity is mainly composed of neutrophils and macrophages. The macrophages percentage in the BALF at ICU admittance correlated with higher ICU mortality. The lack of lymphocytes in BALF could partly explain a reduced anti-viral response.

8.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-306491

ABSTRACT

Background: The incidence and clinical presentation of neurological manifestations of coronavirus disease 2019 (COVID-19) remain unclear. No data regarding the use of neuromonitoring tools in this group of patients are available. Methods: : This is a retrospective study of prospectively collected data. The primary aim was to assess the incidence and type of neurological complications in critically ill COVID-19 patients and their effect on survival, as well as on hospital and intensive care unit (ICU) length-of-stay. The secondary aim was to describe cerebral hemodynamic changes detected by noninvasive neuromonitoring modalities such as transcranial doppler (TCD), optic nerve sheath diameter (ONSD), and pupillometry. Results: : Ninety-four patients with COVID-19 receiving mechanical ventilation and admitted to an ICU from February 28 to June 30, 2020, were included in this study. Fifty-three patients underwent noninvasive neuromonitoring. Neurological complications were detected in 47/94 patients (50%), with delirium as the most common manifestation. Patients with neurological complications, compared to those without, had longer hospital (36.8±25.1 vs. 19.4±16.9 days, p <0.001) and ICU (31.5±22.6 vs. 11.5±10.1 days, p <0.001) stay. The duration of mechanical ventilation was independently associated with risk of developing neurological complications (OR 1.100, 95%CI 1.046-1.175, p=0.001). Patients with increased intracranial pressure (ICP) measured by ONSD (19% of the overall population) had longer ICU stays. Conclusions: : In conclusion, neurological complications are common in critically ill patients with COVID-19 receiving invasive mechanical ventilation and are associated with prolonged ICU length-of-stay. Multimodal noninvasive neuromonitoring systems are useful tools for early detection of cerebrovascular changes in COVID-19. Registration number: 163/2020

9.
Mycoses ; 65(4): 411-418, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1685386

ABSTRACT

BACKGROUND: The diagnosis of invasive pulmonary aspergillosis (IPA) in intensive care unit (ICU) patients is challenging, and the role of Aspergillus-PCR in bronchoalveolar lavage (BAL) is unknown. OBJECTIVES: This study evaluated diagnostic accuracy of Aspergillus-PCR in BAL in IPA in three different cohorts: ICU-admitted patients with COVID-19, ICU-admitted patients without COVID-19 and immunocompromised patients. METHODS: All stored available BAL samples collected from three patient groups were tested with Aspergillus-PCR (AsperGenius® ). IPA was diagnosed according to appropriate criteria for each patient group. RESULTS: We included 111 BAL samples from 101 patients: 52 (51%) patients admitted to ICU for COVID-19, 24 (24%) admitted to ICU for other reasons and 25 (25%) immunocompromised. There were 31 cases of IPA (28%). Aspergillus-PCR sensitivity was 64% (95% CI 47-79) and specificity 99% (95% CI 93-100). Aspergillus-PCR sensitivity was 40% (95%CI 19-64) in ICU COVID-19, 67% (95% CI 21-93) in non-COVID-19 ICU patients and 92% (95%CI 67-98) in the immunocompromised. The concordance between positive BAL-GM and BAL-PCR in patients with and without IPA was significantly lower in ICU patients (32%; 43% in COVID-19, 18% in non-COVID-19) than in the immunocompromised (92%), p < .001. CONCLUSIONS: Aspergillus-PCR in BAL improves the diagnostic accuracy of BAL-GM in ICU patients.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Aspergillus/genetics , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid , COVID-19/diagnosis , Critical Illness , Galactose , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Mannans/analysis , Polymerase Chain Reaction , Sensitivity and Specificity
10.
Microorganisms ; 10(2)2022 Feb 04.
Article in English | MEDLINE | ID: covidwho-1674731

ABSTRACT

Reactivation of herpes simplex virus type 1 (HSV-1) has been described in critically ill patients with coronavirus disease 2019 (COVID-19) pneumonia. In the present two-center retrospective experience, we primarily aimed to assess the cumulative risk of HSV-1 reactivation detected on bronchoalveolar fluid (BALF) samples in invasively ventilated COVID-19 patients with worsening respiratory function. The secondary objectives were the identification of predictors for HSV-1 reactivation and the assessment of its possible prognostic impact. Overall, 41 patients met the study inclusion criteria, and 12/41 patients developed HSV-1 reactivation (29%). No independent predictors of HSV-1 reactivation were identified in the present study. No association was found between HSV-1 reactivation and mortality. Eleven out of 12 patients with HSV-1 reactivation received antiviral therapy with intravenous acyclovir. In conclusion, HSV-1 reactivation is frequently detected in intubated patients with COVID-19. An antiviral treatment in COVID-19 patients with HSV-1 reactivation and worsening respiratory function might be considered.

11.
Front Neurol ; 12: 735469, 2021.
Article in English | MEDLINE | ID: covidwho-1607501

ABSTRACT

Introduction: The role of near-infrared spectroscopy (NIRS) for the evaluation of cerebral haemodynamics is gaining increasing popularity because of its noninvasive nature. The aim of this study was to evaluate the role of the integral components of regional cerebral oxygenation (rSO2) measured by NIRS [i.e., arterial-oxyhemoglobin (O2Hbi) and venous-deoxyhemoglobin (HHbi)-components], as indirect surrogates of cerebral blood flow (CBF) in a cohort of critically ill patients with coronavirus disease 2019 (COVID-19). We compared these findings to the gold standard technique for noninvasive CBF assessment, Transcranial Doppler (TCD). Methods: Mechanically ventilated patients with COVID-19 admitted to the Intensive Care Unit (ICU) of Policlinico San Martino Hospital, Genova, Italy, who underwent multimodal neuromonitoring (including NIRS and TCD), were included. rSO2 and its components [relative changes in O2Hbi, HHbi, and total haemoglobin (cHbi)] were compared with TCD (cerebral blood flow velocity, CBFV). Changes (Δ) in CBFV and rSO2, ΔO2Hbi, ΔHHbi, and ΔcHbi after systemic arterial blood pressure (MAP) modifications induced by different manoeuvres (e.g., rescue therapies and haemodynamic manipulation) were assessed using mixed-effect linear regression analysis and repeated measures correlation coefficients. All values were normalised as percentage changes from the baseline (Δ%). Results: One hundred and four measurements from 25 patients were included. Significant effects of Δ%MAP on Δ%CBF were observed after rescue manoeuvres for CBFV, ΔcHbi, and ΔO2Hbi. The highest correlation was found between ΔCBFV and ΔΔO2Hbi (R = 0.88, p < 0.0001), and the poorest between ΔCBFV and ΔΔHHbi (R = 0.34, p = 0.002). Conclusions: ΔO2Hbi had the highest accuracy to assess CBF changes, reflecting its role as the main component for vasomotor response after changes in MAP. The use of indexes derived from the different components of rSO2 can be useful for the bedside evaluation of cerebral haemodynamics in mechanically ventilated patients with COVID-19.

12.
Montalto, Francesca, Ippolito, Mariachiara, Noto, Alberto, Madotto, Fabiana, Gelardi, Filippa, Savatteri, Paolino, Giarratano, Antonino, Cortegiani, Andrea, Brescia, Fabrizio, Fabiani, Fabio, Zanier, Chiara, Nadalini, Elisa, Gambaretti, Eros, Gabriele, Francesco, Astuto, Marinella, Murabito, Paolo, Sanfilippo, Filippo, Misseri, Giovanni, Moscarelli, Alessandra, Spadaro, Savino, Bussolati, Enrico, Squadrani, Eleonora, Villa, Gianluca, D’Errico, Raffaella, Cocci, Giulia, Lanini, Iacopo, Mirabella, Lucia, Morelli, Alessandra, Tullo, Livio, Caggianelli, Girolamo, Ball, Lorenzo, Iiriti, Margherita, Giordani, Francesca, Giardina, Massimiliano, Mazzeo, Anna Teresa, Grasselli, Giacomo, Cattaneo, Emanuele, Alongi, Salvatore, Marenghi, Cristina, Marmiere, Marilena, Rocchi, Margherita, Turi, Stefano, Landoni, Giovanni, Torrano, Vito, Tinti, Giulia, Giorgi, Antonio, Fumagalli, Roberto, Salvo, Francesco, Blangetti, Ilaria, Cascella, Marco, Forte, Cira Antonietta, Navalesi, Paolo, Montalbano, Marta, Chiarelli, Valentina, Bonanno, Giuseppe, Ferrara, Francesco Paolo, Pernice, Innocenza, Catalisano, Giulia, Marino, Claudia, Presti, Gabriele, Fricano, Dario Calogero, Fucà, Rosa, Palmeri di Villalba, Cesira, Strano, Maria Teresa, Caruso, Sabrina, Scafidi, Antonino, Mazzarese, Vincenzo, Augugliaro, Ettore, Terranova, Valeria, Forfori, Francesco, Corradi, Francesco, Taddei, Erika, Isirdi, Alessandro, Pratesi, Giorgia, Puccini, Francesca, Paternoster, Gianluca, Barile, Alessio, Tescione, Marco, Santacaterina, Irene, Siclari, Eliana Maria, Tripodi, Vincenzo Francesco, Vadalà, Mariacristina, Agrò, Felice Eugenio, Pascarella, Giuseppe, Piliego, Chiara, Aceto, Paola, De Pascale, Gennaro, Dottarelli, Alessandra, Romanò, Bruno, Russo, Andrea, Covotta, Marco, Giorgerini, Valeria, Sardellitti, Federica, Vitelli, Giulia Maria, Coluzzi, Flaminia, Bove, Tiziana, Vetrugno, Luigi.
Journal of Anesthesia, Analgesia and Critical Care ; 1(1):17-17, 2021.
Article in English | BioMed Central | ID: covidwho-1542137
14.
Ultraschall Med ; 2021 Nov 03.
Article in English | MEDLINE | ID: covidwho-1500782

ABSTRACT

PURPOSE: The goal of this survey was to describe the use and diffusion of lung ultrasound (LUS), the level of training received before and during the COVID-19 pandemic, and the clinical impact LUS has had on COVID-19 cases in intensive care units (ICU) from February 2020 to May 2020. MATERIALS AND METHODS: The Italian Lung Ultrasound Survey (ITALUS) was a nationwide online survey proposed to Italian anesthesiologists and intensive care physicians carried out after the first wave of the COVID-19 pandemic. It consisted of 27 questions, both quantitative and qualitative. RESULTS: 807 responded to the survey. The median previous LUS experience was 3 years (IQR 1.0-6.0). 473 (60.9 %) reported having attended at least one training course on LUS before the COVID-19 pandemic. 519 (73.9 %) reported knowing how to use the LUS score. 404 (52 %) reported being able to use LUS without any supervision. 479 (68.2 %) said that LUS influenced their clinical decision-making, mostly with respect to patient monitoring. During the pandemic, the median of patients daily evaluated with LUS increased 3-fold (p < 0.001), daily use of general LUS increased from 10.4 % to 28.9 % (p < 0.001), and the daily use of LUS score in particular increased from 1.6 % to 9.0 % (p < 0.001). CONCLUSION: This survey showed that LUS was already extensively used during the first wave of the COVID-19 pandemic by anesthesiologists and intensive care physicians in Italy, and then its adoption increased further. Residency programs are already progressively implementing LUS teaching. However, 76.7 % of the sample did not undertake any LUS certification.

15.
J Clin Med ; 10(20)2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1470899

ABSTRACT

Monoclonal antibodies, such as bamlanivimab and etesevimab combination (BEC), have been proposed for patients with mild or moderate coronavirus disease 2019 (COVID-19). However, few studies have assessed the factors associated with the early administration of BEC or the impact of early BEC treatment on the clinical evolution of the patients. We conducted a retrospective cohort study of all adults with COVID-19 who received BEC at three institutions in the Liguria region. The primary endpoint was to investigate the clinical variables associated with early BEC infusion. Secondary endpoints were 30-day overall mortality and the composite endpoint of requirement of hospital admission or need for supplemental oxygen during the 30-day follow-up period. A total of 127 patients (median age 70 years; 56.7% males) received BEC. Of those, 93 (73.2%) received BEC within 5 days from symptoms onset (early BEC). Patients with a higher Charlson comorbidity index were more likely to receive early treatment (odds ratio (OR) 1.60, 95% confidence interval (CI) 1.04-2.45; p = 0.03) in contrast to those reporting fever at presentation (OR 0.26, 0.08-0.82; p = 0.02). Early BEC was associated with lower likelihood of hospital admission or need for supplemental oxygen (OR 0.19, 0.06-0.65; p = 0.008). Five patients who received early BEC died during the follow-up period, but only one of them due to COVID-19-related causes. Early bamlanivimab and etesevimab combination was more frequently administered to patients with a high Charlson comorbidity index. Despite this, early BEC was associated with a lower rate of hospital admission or need for any supplementary oxygen compared to late administration. These results suggest that efforts should focus on encouraging early BEC use in patients with mild-moderate COVID-19 at risk for complications.

16.
Ann Med ; 53(1): 1779-1786, 2021 12.
Article in English | MEDLINE | ID: covidwho-1462157

ABSTRACT

BACKGROUND: An unexpected high prevalence of enterococcal bloodstream infection (BSI) has been observed in critically ill patients with COVID-19 in the intensive care unit (ICU). MATERIALS AND METHODS: The primary objective was to describe the characteristics of ICU-acquired enterococcal BSI in critically ill patients with COVID-19. A secondary objective was to exploratorily assess the predictors of 30-day mortality in critically ill COVID-19 patients with ICU-acquired enterococcal BSI. RESULTS: During the study period, 223 patients with COVID-19 were admitted to COVID-19-dedicated ICUs in our centre. Overall, 51 episodes of enterococcal BSI, occurring in 43 patients, were registered. 29 (56.9%) and 22 (43.1%) BSI were caused by Enterococcus faecalis and Enterococcus faecium, respectively. The cumulative incidence of ICU-acquired enterococcal BSI was of 229 episodes per 1000 ICU admissions (95% mid-p confidence interval [CI] 172-298). Most patients received an empirical therapy with at least one agent showing in vitro activity against the blood isolate (38/43, 88%). The crude 30-day mortality was 42% (18/43) and 57% (4/7) in the entire series and in patients with vancomycin-resistant E. faecium BSI, respectively. The sequential organ failure assessment (SOFA) score showed an independent association with increased mortality (odds ratio 1.32 per one-point increase, with 95% confidence interval 1.04-1.66, p = .021). CONCLUSIONS: The cumulative incidence of enterococcal BSI is high in critically ill patients with COVID-19. Our results suggest a crucial role of the severity of the acute clinical conditions, to which both the underlying viral pneumonia and the enterococcal BSI may contribute, in majorly influencing the outcome.KEY MESSAGESThe cumulative incidence of enterococcal BSI is high in critically ill patients with COVID-19.The crude 30-day mortality of enterococcal BSI in critically ill patients with COVID-19 may be higher than 40%.There could be a crucial role of the severity of the acute clinical conditions, to which both the underlying viral pneumonia and the enterococcal BSI may contribute, in majorly influencing the outcome.


Subject(s)
Bacteremia/epidemiology , COVID-19/epidemiology , Cross Infection/epidemiology , Enterococcus faecalis , Enterococcus faecium , Gram-Positive Bacterial Infections/epidemiology , Mortality , Vancomycin-Resistant Enterococci , Aged , Bacteremia/microbiology , Critical Illness , Female , Gram-Positive Bacterial Infections/microbiology , Humans , Intensive Care Units , Male , Microbial Sensitivity Tests , Middle Aged , Organ Dysfunction Scores , Retrospective Studies , SARS-CoV-2
18.
Crit Care ; 25(1): 214, 2021 06 21.
Article in English | MEDLINE | ID: covidwho-1440944

ABSTRACT

BACKGROUND: Critically ill COVID-19 patients have pathophysiological lung features characterized by perfusion abnormalities. However, to date no study has evaluated whether the changes in the distribution of pulmonary gas and blood volume are associated with the severity of gas-exchange impairment and the type of respiratory support (non-invasive versus invasive) in patients with severe COVID-19 pneumonia. METHODS: This was a single-center, retrospective cohort study conducted in a tertiary care hospital in Northern Italy during the first pandemic wave. Pulmonary gas and blood distribution was assessed using a technique for quantitative analysis of dual-energy computed tomography. Lung aeration loss (reflected by percentage of normally aerated lung tissue) and the extent of gas:blood volume mismatch (percentage of non-aerated, perfused lung tissue-shunt; aerated, non-perfused dead space; and non-aerated/non-perfused regions) were evaluated in critically ill COVID-19 patients with different clinical severity as reflected by the need for non-invasive or invasive respiratory support. RESULTS: Thirty-five patients admitted to the intensive care unit between February 29th and May 30th, 2020 were included. Patients requiring invasive versus non-invasive mechanical ventilation had both a lower percentage of normally aerated lung tissue (median [interquartile range] 33% [24-49%] vs. 63% [44-68%], p < 0.001); and a larger extent of gas:blood volume mismatch (43% [30-49%] vs. 25% [14-28%], p = 0.001), due to higher shunt (23% [15-32%] vs. 5% [2-16%], p = 0.001) and non-aerated/non perfused regions (5% [3-10%] vs. 1% [0-2%], p = 0.001). The PaO2/FiO2 ratio correlated positively with normally aerated tissue (ρ = 0.730, p < 0.001) and negatively with the extent of gas-blood volume mismatch (ρ = - 0.633, p < 0.001). CONCLUSIONS: In critically ill patients with severe COVID-19 pneumonia, the need for invasive mechanical ventilation and oxygenation impairment were associated with loss of aeration and the extent of gas:blood volume mismatch.


Subject(s)
Blood Volume/physiology , COVID-19/diagnostic imaging , COVID-19/metabolism , Lung/diagnostic imaging , Lung/metabolism , Pulmonary Gas Exchange/physiology , Aged , Blood Gas Analysis/methods , COVID-19/epidemiology , Cohort Studies , Critical Illness/epidemiology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Respiration, Artificial/methods , Retrospective Studies , Tomography, X-Ray Computed/methods
19.
Eur J Intern Med ; 94: 39-44, 2021 12.
Article in English | MEDLINE | ID: covidwho-1377703

ABSTRACT

OBJECTIVES: The hypothesis of this study is that tocilizumab should affect common signs of infection due to its immunosuppressive properties. Primary aim of the study was to investigate whether the administration of tocilizumab to critically ill patients with COVID-19, led to a different clinical presentation of infectious complications compared to patients who did not receive tocilizumab. Secondary aim was investigating differences in laboratory parameters between groups. METHODS: Single-centre retrospective study, enrolling COVID-19 patients who developed a microbiologically confirmed infectious complication [ventilator associated pneumonia or bloodstream infection] after intensive care unit [ICU] admission and either treated with tocilizumab or not [controls]. RESULTS: A total of 58 patients were included, 25 treated with tocilizumab and 33 controls. Median time from tocilizumab administration to infection onset was 10 days [range 2-26]. Patients were 78% male, with median age 65 years [range 45-79]. At first clinical presentation of the infectious event, the frequency of hypotension [11/25, 44% vs. 11/33, 33%], fever [8/25, 32% vs. 10/33, 30%] or hypothermia [0/25,0%, vs. 2/33, 6%], and oxygen desaturation [6/25, 28% vs 4/33, 12%], as well as the frequency of SOFA score increase of ≥ 2 points [4/25, 16%,vs. 4/33, 12%] was similar in tocilizumab treated patients and controls [p>0.1 for all comparisons]. Among laboratory parameters, C-Reactive Protein elevation was reduced in tocilizumab treated patients compared to controls [8/25, 32% vs. 22/33, 67%, p=0.009]. CONCLUSION: The clinical features of infectious complications in critically ill patients with COVID-19 admitted to ICU were not affected by tocilizumab.


Subject(s)
COVID-19 , Aged , Antibodies, Monoclonal, Humanized , COVID-19/drug therapy , Female , Humans , Intensive Care Units , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Standard of Care
20.
BMC Pulm Med ; 21(1): 267, 2021 Aug 17.
Article in English | MEDLINE | ID: covidwho-1362053

ABSTRACT

BACKGROUND: The aim of the study is to estimate the prevalence of atelectasis assessed with computer tomography (CT) in SARS-CoV-2 pneumonia and the relationship between the amount of atelectasis with oxygenation impairment, Intensive Care Unit admission rate and the length of in-hospital stay. PATIENTS AND METHODS: Two-hundred thirty-seven patients admitted to the hospital with SARS-CoV-2 pneumonia diagnosed by clinical, radiology and molecular tests in the nasopharyngeal swab who underwent a chest computed tomography because of a respiratory worsening from Apr 1 to Apr 30, 2020 were included in the study. Patients were divided into three groups depending on the presence and amount of atelectasis at the computed tomography: no atelectasis, small atelectasis (< 5% of the estimated lung volume) or large atelectasis (> 5% of the estimated lung volume). In all patients, clinical severity, oxygen-therapy need, Intensive Care Unit admission rate, the length of in-hospital stay and in-hospital mortality data were collected. RESULTS: Thirty patients (19%) showed small atelectasis while eight patients (5%) showed large atelectasis. One hundred and seventeen patients (76%) did not show atelectasis. Patients with large atelectasis compared to patients with small atelectasis had lower SatO2/FiO2 (182 vs 411 respectively, p = 0.01), needed more days of oxygen therapy (20 vs 5 days respectively, p = 0,02), more frequently Intensive Care Unit admission (75% vs 7% respectively, p < 0.01) and a longer period of hospitalization (40 vs 14 days respectively p < 0.01). CONCLUSION: In patients with SARS-CoV-2 pneumonia, atelectasis might appear in up to 24% of patients and the presence of larger amount of atelectasis is associated with worse oxygenation and clinical outcome.


Subject(s)
COVID-19 , Hypoxia , Pneumonia, Viral , Pulmonary Atelectasis , Tomography, X-Ray Computed/methods , Aged , COVID-19/diagnosis , COVID-19/mortality , COVID-19/physiopathology , COVID-19 Testing/methods , Female , Humans , Hypoxia/etiology , Hypoxia/therapy , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Lung/diagnostic imaging , Lung Volume Measurements/methods , Male , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/etiology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Prevalence , Pulmonary Atelectasis/diagnostic imaging , Pulmonary Atelectasis/epidemiology , Pulmonary Atelectasis/etiology , Pulmonary Atelectasis/physiopathology , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index , Spain/epidemiology , Tomography, X-Ray Computed/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL