Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
JMIR Public Health Surveill ; 8(4): e33733, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1793158

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, medical laypersons with symptoms indicative of a COVID-19 infection commonly sought guidance on whether and where to find medical care. Numerous web-based decision support tools (DSTs) have been developed, both by public and commercial stakeholders, to assist their decision making. Though most of the DSTs' underlying algorithms are similar and simple decision trees, their mode of presentation differs: some DSTs present a static flowchart, while others are designed as a conversational agent, guiding the user through the decision tree's nodes step-by-step in an interactive manner. OBJECTIVE: This study aims to investigate whether interactive DSTs provide greater decision support than noninteractive (ie, static) flowcharts. METHODS: We developed mock interfaces for 2 DSTs (1 static, 1 interactive), mimicking patient-facing, freely available DSTs for COVID-19-related self-assessment. Their underlying algorithm was identical and based on the Centers for Disease Control and Prevention's guidelines. We recruited adult US residents online in November 2020. Participants appraised the appropriate social and care-seeking behavior for 7 fictitious descriptions of patients (case vignettes). Participants in the experimental groups received either the static or the interactive mock DST as support, while the control group appraised the case vignettes unsupported. We determined participants' accuracy, decision certainty (after deciding), and mental effort to measure the quality of decision support. Participants' ratings of the DSTs' usefulness, ease of use, trust, and future intention to use the tools served as measures to analyze differences in participants' perception of the tools. We used ANOVAs and t tests to assess statistical significance. RESULTS: Our survey yielded 196 responses. The mean number of correct assessments was higher in the intervention groups (interactive DST group: mean 11.71, SD 2.37; static DST group: mean 11.45, SD 2.48) than in the control group (mean 10.17, SD 2.00). Decisional certainty was significantly higher in the experimental groups (interactive DST group: mean 80.7%, SD 14.1%; static DST group: mean 80.5%, SD 15.8%) compared to the control group (mean 65.8%, SD 20.8%). The differences in these measures proved statistically significant in t tests comparing each intervention group with the control group (P<.001 for all 4 t tests). ANOVA detected no significant differences regarding mental effort between the 3 study groups. Differences between the 2 intervention groups were of small effect sizes and nonsignificant for all 3 measures of the quality of decision support and most measures of participants' perception of the DSTs. CONCLUSIONS: When the decision space is limited, as is the case in common COVID-19 self-assessment DSTs, static flowcharts might prove as beneficial in enhancing decision quality as interactive tools. Given that static flowcharts reveal the underlying decision algorithm more transparently and require less effort to develop, they might prove more efficient in providing guidance to the public. Further research should validate our findings on different use cases, elaborate on the trade-off between transparency and convenience in DSTs, and investigate whether subgroups of users benefit more with 1 type of user interface than the other. TRIAL REGISTRATION: Deutsches Register Klinischer Studien DRKS00028136; https://tinyurl.com/4bcfausx (retrospectively registered).


Subject(s)
COVID-19 , Adult , Humans , Intention , Pandemics , Surveys and Questionnaires
2.
J Clin Med ; 11(3)2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1686839

ABSTRACT

(1) Background: Female sex is considered a risk factor for Intensive Care Unit-Acquired Weakness (ICUAW). The aim is to investigate sex-specific aspects of skeletal muscle metabolism in the context of ICUAW. (2) Methods: This is a sex-specific sub-analysis from two prospectively conducted trials examining skeletal muscle metabolism and advanced muscle activating measures in critical illness. Muscle strength was assessed by Medical Research Council Score. The insulin sensitivity index was analyzed by hyperinsulinemic-euglycemic (HE) clamp. Muscular metabolites were studied by microdialysis. M. vastus lateralis biopsies were taken. The molecular analysis included protein degradation pathways. Morphology was assessed by myocyte cross-sectional area (MCSA). Multivariable linear regression models for the effect of sex on outcome parameters were performed. (3) Results: n = 83 (♂n = 57, 68.7%; ♀n = 26, 31.3%) ICU patients were included. ICUAW was present in 81.1%♂ and in 82.4%♀ at first awakening (p = 0.911) and in 59.5%♂ and in 70.6%♀ at ICU discharge (p = 0.432). Insulin sensitivity index was reduced more in women than in men (p = 0.026). Sex was significantly associated with insulin sensitivity index and MCSA of Type IIa fibers in the adjusted regression models. (4) Conclusion: This hypothesis-generating analysis suggests that more pronounced impairments in insulin sensitivity and lower MCSA of Type IIa fibers in critically ill women may be relevant for sex differences in ICUAW.

3.
J Med Internet Res ; 23(2): e25283, 2021 02 08.
Article in English | MEDLINE | ID: covidwho-1573903

ABSTRACT

BACKGROUND: The COVID-19 outbreak has affected the lives of millions of people by causing a dramatic impact on many health care systems and the global economy. This devastating pandemic has brought together communities across the globe to work on this issue in an unprecedented manner. OBJECTIVE: This case study describes the steps and methods employed in the conduction of a remote online health hackathon centered on challenges posed by the COVID-19 pandemic. It aims to deliver a clear implementation road map for other organizations to follow. METHODS: This 4-day hackathon was conducted in April 2020, based on six COVID-19-related challenges defined by frontline clinicians and researchers from various disciplines. An online survey was structured to assess: (1) individual experience satisfaction, (2) level of interprofessional skills exchange, (3) maturity of the projects realized, and (4) overall quality of the event. At the end of the event, participants were invited to take part in an online survey with 17 (+5 optional) items, including multiple-choice and open-ended questions that assessed their experience regarding the remote nature of the event and their individual project, interprofessional skills exchange, and their confidence in working on a digital health project before and after the hackathon. Mentors, who guided the participants through the event, also provided feedback to the organizers through an online survey. RESULTS: A total of 48 participants and 52 mentors based in 8 different countries participated and developed 14 projects. A total of 75 mentorship video sessions were held. Participants reported increased confidence in starting a digital health venture or a research project after successfully participating in the hackathon, and stated that they were likely to continue working on their projects. Of the participants who provided feedback, 60% (n=18) would not have started their project without this particular hackathon and indicated that the hackathon encouraged and enabled them to progress faster, for example, by building interdisciplinary teams, gaining new insights and feedback provided by their mentors, and creating a functional prototype. CONCLUSIONS: This study provides insights into how online hackathons can contribute to solving the challenges and effects of a pandemic in several regions of the world. The online format fosters team diversity, increases cross-regional collaboration, and can be executed much faster and at lower costs compared to in-person events. Results on preparation, organization, and evaluation of this online hackathon are useful for other institutions and initiatives that are willing to introduce similar event formats in the fight against COVID-19.


Subject(s)
COVID-19/therapy , Delivery of Health Care/organization & administration , Internet , Adult , COVID-19/epidemiology , Humans , SARS-CoV-2/isolation & purification
4.
JMIR Public Health Surveill ; 8(4): e33733, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1559853

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, medical laypersons with symptoms indicative of a COVID-19 infection commonly sought guidance on whether and where to find medical care. Numerous web-based decision support tools (DSTs) have been developed, both by public and commercial stakeholders, to assist their decision making. Though most of the DSTs' underlying algorithms are similar and simple decision trees, their mode of presentation differs: some DSTs present a static flowchart, while others are designed as a conversational agent, guiding the user through the decision tree's nodes step-by-step in an interactive manner. OBJECTIVE: This study aims to investigate whether interactive DSTs provide greater decision support than noninteractive (ie, static) flowcharts. METHODS: We developed mock interfaces for 2 DSTs (1 static, 1 interactive), mimicking patient-facing, freely available DSTs for COVID-19-related self-assessment. Their underlying algorithm was identical and based on the Centers for Disease Control and Prevention's guidelines. We recruited adult US residents online in November 2020. Participants appraised the appropriate social and care-seeking behavior for 7 fictitious descriptions of patients (case vignettes). Participants in the experimental groups received either the static or the interactive mock DST as support, while the control group appraised the case vignettes unsupported. We determined participants' accuracy, decision certainty (after deciding), and mental effort to measure the quality of decision support. Participants' ratings of the DSTs' usefulness, ease of use, trust, and future intention to use the tools served as measures to analyze differences in participants' perception of the tools. We used ANOVAs and t tests to assess statistical significance. RESULTS: Our survey yielded 196 responses. The mean number of correct assessments was higher in the intervention groups (interactive DST group: mean 11.71, SD 2.37; static DST group: mean 11.45, SD 2.48) than in the control group (mean 10.17, SD 2.00). Decisional certainty was significantly higher in the experimental groups (interactive DST group: mean 80.7%, SD 14.1%; static DST group: mean 80.5%, SD 15.8%) compared to the control group (mean 65.8%, SD 20.8%). The differences in these measures proved statistically significant in t tests comparing each intervention group with the control group (P<.001 for all 4 t tests). ANOVA detected no significant differences regarding mental effort between the 3 study groups. Differences between the 2 intervention groups were of small effect sizes and nonsignificant for all 3 measures of the quality of decision support and most measures of participants' perception of the DSTs. CONCLUSIONS: When the decision space is limited, as is the case in common COVID-19 self-assessment DSTs, static flowcharts might prove as beneficial in enhancing decision quality as interactive tools. Given that static flowcharts reveal the underlying decision algorithm more transparently and require less effort to develop, they might prove more efficient in providing guidance to the public. Further research should validate our findings on different use cases, elaborate on the trade-off between transparency and convenience in DSTs, and investigate whether subgroups of users benefit more with 1 type of user interface than the other. TRIAL REGISTRATION: Deutsches Register Klinischer Studien DRKS00028136; https://tinyurl.com/4bcfausx (retrospectively registered).


Subject(s)
COVID-19 , Adult , Humans , Intention , Pandemics , Surveys and Questionnaires
5.
Sci Rep ; 11(1): 13205, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1281734

ABSTRACT

In a pandemic with a novel disease, disease-specific prognosis models are available only with a delay. To bridge the critical early phase, models built for similar diseases might be applied. To test the accuracy of such a knowledge transfer, we investigated how precise lethal courses in critically ill COVID-19 patients can be predicted by a model trained on critically ill non-COVID-19 viral pneumonia patients. We trained gradient boosted decision tree models on 718 (245 deceased) non-COVID-19 viral pneumonia patients to predict individual ICU mortality and applied it to 1054 (369 deceased) COVID-19 patients. Our model showed a significantly better predictive performance (AUROC 0.86 [95% CI 0.86-0.87]) than the clinical scores APACHE2 (0.63 [95% CI 0.61-0.65]), SAPS2 (0.72 [95% CI 0.71-0.74]) and SOFA (0.76 [95% CI 0.75-0.77]), the COVID-19-specific mortality prediction models of Zhou (0.76 [95% CI 0.73-0.78]) and Wang (laboratory: 0.62 [95% CI 0.59-0.65]; clinical: 0.56 [95% CI 0.55-0.58]) and the 4C COVID-19 Mortality score (0.71 [95% CI 0.70-0.72]). We conclude that lethal courses in critically ill COVID-19 patients can be predicted by a machine learning model trained on non-COVID-19 patients. Our results suggest that in a pandemic with a novel disease, prognosis models built for similar diseases can be applied, even when the diseases differ in time courses and in rates of critical and lethal courses.


Subject(s)
COVID-19/diagnosis , Machine Learning , Models, Theoretical , Aged , COVID-19/therapy , Critical Illness , Female , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Risk Factors
6.
Infection ; 49(4): 703-714, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1198523

ABSTRACT

PURPOSE: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course. METHODS: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed. RESULTS: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients. CONCLUSIONS: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/physiology , COVID-19/therapy , Cohort Studies , Germany/epidemiology , Hospitalization , Humans , Hypertension/complications , Kinetics , Prospective Studies , Respiration, Artificial , Risk Factors , Tertiary Care Centers , Time Factors , Viral Load , Virus Shedding
7.
Kidney Int Rep ; 6(4): 905-915, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1169160

ABSTRACT

INTRODUCTION: Acute kidney injury (AKI) is an important complication in COVID-19, but its precise etiology has not fully been elucidated. Insights into AKI mechanisms may be provided by analyzing the temporal associations of clinical parameters reflecting disease processes and AKI development. METHODS: We performed an observational cohort study of 223 consecutive COVID-19 patients treated at 3 sites of a tertiary care referral center to describe the evolvement of severe AKI (Kidney Disease: Improving Global Outcomes stage 3) and identify conditions promoting its development. Descriptive statistics and explanatory multivariable Cox regression modeling with clinical parameters as time-varying covariates were used to identify risk factors of severe AKI. RESULTS: Severe AKI developed in 70 of 223 patients (31%) with COVID-19, of which 95.7% required kidney replacement therapy. Patients with severe AKI were older, predominantly male, had more comorbidities, and displayed excess mortality. Severe AKI occurred exclusively in intensive care unit patients, and 97.3% of the patients developing severe AKI had respiratory failure. Mechanical ventilation, vasopressor therapy, and inflammatory markers (serum procalcitonin levels and leucocyte count) were independent time-varying risk factors of severe AKI. Increasing inflammatory markers displayed a close temporal association with the development of severe AKI. Sensitivity analysis on risk factors of AKI stage 2 and 3 combined confirmed these findings. CONCLUSION: Severe AKI in COVID-19 was tightly coupled with critical illness and systemic inflammation and was not observed in milder disease courses. These findings suggest that traditional systemic AKI mechanisms rather than kidney-specific processes contribute to severe AKI in COVID-19.

8.
Nat Biotechnol ; 38(8): 970-979, 2020 08.
Article in English | MEDLINE | ID: covidwho-1023942

ABSTRACT

To investigate the immune response and mechanisms associated with severe coronavirus disease 2019 (COVID-19), we performed single-cell RNA sequencing on nasopharyngeal and bronchial samples from 19 clinically well-characterized patients with moderate or critical disease and from five healthy controls. We identified airway epithelial cell types and states vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In patients with COVID-19, epithelial cells showed an average three-fold increase in expression of the SARS-CoV-2 entry receptor ACE2, which correlated with interferon signals by immune cells. Compared to moderate cases, critical cases exhibited stronger interactions between epithelial and immune cells, as indicated by ligand-receptor expression profiles, and activated immune cells, including inflammatory macrophages expressing CCL2, CCL3, CCL20, CXCL1, CXCL3, CXCL10, IL8, IL1B and TNF. The transcriptional differences in critical cases compared to moderate cases likely contribute to clinical observations of heightened inflammatory tissue damage, lung injury and respiratory failure. Our data suggest that pharmacologic inhibition of the CCR1 and/or CCR5 pathways might suppress immune hyperactivation in critical COVID-19.


Subject(s)
Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Respiratory System/pathology , Single-Cell Analysis , Transcriptome , Adult , Aged , Angiotensin-Converting Enzyme 2 , Bronchoalveolar Lavage Fluid/virology , COVID-19 , Cell Communication , Cell Differentiation , Coronavirus Infections/virology , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Humans , Immune System/pathology , Inflammation/immunology , Inflammation/pathology , Longitudinal Studies , Male , Middle Aged , Nasopharynx/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/virology , Respiratory System/immunology , Respiratory System/virology , Severity of Illness Index
9.
J Med Internet Res ; 22(10): e22161, 2020 10 29.
Article in English | MEDLINE | ID: covidwho-895252

ABSTRACT

BACKGROUND: Owing to an increase in digital technologies in health care, recently leveraged by the COVID-19 pandemic, physicians are required to use these technologies appropriately and to be familiar with their implications on patient care, the health system, and society. Therefore, medical students should be confronted with digital health during their medical education. However, corresponding teaching formats and concepts are still largely lacking in the medical curricula. OBJECTIVE: This study aims to introduce digital health as a curricular module at a German medical school and to identify undergraduate medical competencies in digital health and their suitable teaching methods. METHODS: We developed a 3-week curricular module on digital health for third-year medical students at a large German medical school, taking place for the first time in January 2020. Semistructured interviews with 5 digital health experts were recorded, transcribed, and analyzed using an abductive approach. We obtained feedback from the participating students and lecturers of the module through a 17-item survey questionnaire. RESULTS: The module received overall positive feedback from both students and lecturers who expressed the need for further digital health education and stated that the field is very important for clinical care and is underrepresented in the current medical curriculum. We extracted a detailed overview of digital health competencies, skills, and knowledge to teach the students from the expert interviews. They also contained suggestions for teaching methods and statements supporting the urgency of the implementation of digital health education in the mandatory curriculum. CONCLUSIONS: An elective class seems to be a suitable format for the timely introduction of digital health education. However, a longitudinal implementation in the mandatory curriculum should be the goal. Beyond training future physicians in digital skills and teaching them digital health's ethical, legal, and social implications, the experience-based development of a critical digital health mindset with openness to innovation and the ability to assess ever-changing health technologies through a broad transdisciplinary approach to translate research into clinical routine seem more important. Therefore, the teaching of digital health should be as practice-based as possible and involve the educational cooperation of different institutions and academic disciplines.


Subject(s)
Curriculum , Education, Medical, Undergraduate/methods , Schools, Medical , Students, Medical , Telemedicine , COVID-19 , Coronavirus Infections , Feedback , Germany , Humans , Pandemics , Pneumonia, Viral , Surveys and Questionnaires
10.
J Med Internet Res ; 22(6): e19091, 2020 06 19.
Article in English | MEDLINE | ID: covidwho-620537

ABSTRACT

BACKGROUND: Due to demographic change and, more recently, coronavirus disease (COVID-19), the importance of modern intensive care units (ICU) is becoming apparent. One of the key components of an ICU is the continuous monitoring of patients' vital parameters. However, existing advances in informatics, signal processing, or engineering that could alleviate the burden on ICUs have not yet been applied. This could be due to the lack of user involvement in research and development. OBJECTIVE: This study focused on the satisfaction of ICU staff with current patient monitoring and their suggestions for future improvements. We aimed to identify aspects of monitoring that interrupt patient care, display devices for remote monitoring, use cases for artificial intelligence (AI), and whether ICU staff members are willing to improve their digital literacy or contribute to the improvement of patient monitoring. We further aimed to identify differences in the responses of different professional groups. METHODS: This survey study was performed with ICU staff from 4 ICUs of a German university hospital between November 2019 and January 2020. We developed a web-based 36-item survey questionnaire, by analyzing a preceding qualitative interview study with ICU staff, about the clinical requirements of future patient monitoring. Statistical analyses of questionnaire results included median values with their bootstrapped 95% confidence intervals, and chi-square tests to compare the distributions of item responses of the professional groups. RESULTS: In total, 86 of the 270 ICU physicians and nurses completed the survey questionnaire. The majority stated they felt confident using the patient monitoring equipment, but that high rates of false-positive alarms and the many sensor cables interrupted patient care. Regarding future improvements, respondents asked for wireless sensors, a reduction in the number of false-positive alarms, and hospital standard operating procedures for alarm management. Responses to the display devices proposed for remote patient monitoring were divided. Most respondents indicated it would be useful for earlier alerting or when they were responsible for multiple wards. AI for ICUs would be useful for early detection of complications and an increased risk of mortality; in addition, the AI could propose guidelines for therapy and diagnostics. Transparency, interoperability, usability, and staff training were essential to promote the use of AI. The majority wanted to learn more about new technologies for the ICU and required more time for learning. Physicians had fewer reservations than nurses about AI-based intelligent alarm management and using mobile phones for remote monitoring. CONCLUSIONS: This survey study of ICU staff revealed key improvements for patient monitoring in intensive care medicine. Hospital providers and medical device manufacturers should focus on reducing false alarms, implementing hospital alarm standard operating procedures, introducing wireless sensors, preparing for the use of AI, and enhancing the digital literacy of ICU staff. Our results may contribute to the user-centered transfer of digital technologies into practice to alleviate challenges in intensive care medicine. TRIAL REGISTRATION: ClinicalTrials.gov NCT03514173; https://clinicaltrials.gov/ct2/show/NCT03514173.


Subject(s)
Betacoronavirus , Coronavirus Infections , Critical Care/methods , Health Care Surveys , Intensive Care Units , Monitoring, Physiologic/methods , Pandemics , Pneumonia, Viral , Adult , Artificial Intelligence , COVID-19 , Critical Care/standards , Female , Germany , Hospitals, University , Humans , Male , Monitoring, Physiologic/standards , Nurses , Physicians , Qualitative Research , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL