Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
ISPRS International Journal of Geo-Information ; 10(6):387, 2021.
Article in English | MDPI | ID: covidwho-1259505

ABSTRACT

(1) Background: Human mobility between geographic units is an important way in which COVID-19 is spread across regions. Due to the pressure of epidemic control and economic recovery, states in the United States have adopted different policies for mobility limitations. Assessing the impact of these policies on the spatiotemporal interaction of COVID-19 transmission among counties in each state is critical to formulating epidemic policies. (2) Methods: We utilized Moran’s I index and K-means clustering to investigate the time-varying spatial autocorrelation effect of 49 states (excluding the District of Colombia) with daily new cases at the county level from 22 January 2020 to 20 August 2020. Based on the dynamic spatial lag model (SLM) and the SIR model with unreported infection rate (SIRu), the integrated SLM-SIRu model was constructed to estimate the inter-county spatiotemporal interaction coefficient of daily new cases in each state, which was further explored by Pearson correlation test and stepwise OLS regression with socioeconomic factors. (3) Results: The K-means clustering divided the time-varying spatial autocorrelation curves of the 49 states into four types: continuous increasing, fluctuating increasing, weak positive, and weak negative. The Pearson correlation analysis showed that the spatiotemporal interaction coefficients in each state estimated by SLM-SIRu were significantly positively correlated with the variables of median age, population density, and proportions of international immigrants and highly educated population, but negatively correlated with the birth rate. Further stepwise OLS regression retained only three positive correlated variables: poverty rate, population density, and highly educated population proportion. (4) Conclusions: This result suggests that various state policies in the U.S. have imposed different impacts on COVID-19 transmission among counties. All states should provide more protection and support for the low-income population;high-density populated states need to strengthen regional mobility restrictions;and the highly educated population should reduce unnecessary regional movement and strengthen self-protection.

3.
Int J Environ Res Public Health ; 18(3)2021 01 26.
Article in English | MEDLINE | ID: covidwho-1050609

ABSTRACT

BACKGROUND: Potential unreported infection might impair and mislead policymaking for COVID-19, and the contemporary spread of COVID-19 varies in different counties of the United States. It is necessary to estimate the cases that might be underestimated based on county-level data, to take better countermeasures against COVID-19. We suggested taking time-varying Susceptible-Infected-Recovered (SIR) models with unreported infection rates (UIR) to estimate factual COVID-19 cases in the United States. METHODS: Both the SIR model integrated with unreported infection rates (SIRu) of fixed-time effect and SIRu with time-varying parameters (tvSIRu) were applied to estimate and compare the values of transmission rate (TR), UIR, and infection fatality rate (IFR) based on US county-level COVID-19 data. RESULTS: Based on the US county-level COVID-19 data from 22 January (T1) to 20 August (T212) in 2020, SIRu was first tested and verified by Ordinary Least Squares (OLS) regression. Further regression of SIRu at the county-level showed that the average values of TR, UIR, and IFR were 0.034%, 19.5%, and 0.51% respectively. The ranges of TR, UIR, and IFR for all states ranged from 0.007-0.157 (mean = 0.048), 7.31-185.6 (mean = 38.89), and 0.04-2.22% (mean = 0.22%). Among the time-varying TR equations, the power function showed better fitness, which indicated a decline in TR decreasing from 227.58 (T1) to 0.022 (T212). The general equation of tvSIRu showed that both the UIR and IFR were gradually increasing, wherein, the estimated value of UIR was 9.1 (95%CI 5.7-14.0) and IFR was 0.70% (95%CI 0.52-0.95%) at T212. INTERPRETATION: Despite the declining trend in TR and IFR, the UIR of COVID-19 in the United States is still on the rise, which, it was assumed would decrease with sufficient tests or improved countersues. The US medical system might be largely affected by severe cases amidst a rapid spread of COVID-19.


Subject(s)
COVID-19 , Disease Notification , COVID-19/epidemiology , Disease Notification/statistics & numerical data , Humans , Models, Statistical , Regression Analysis , United States/epidemiology
6.
Int J Environ Res Public Health ; 17(24)2020 12 19.
Article in English | MEDLINE | ID: covidwho-1011501

ABSTRACT

The U.S. has merely 4% of the world population, but contains 25% of the world's COVID-19 cases. Since the COVID-19 outbreak in the U.S., Massachusetts has been leading other states in the total number of COVID-19 cases. Racial residential segregation is a fundamental cause of racial disparities in health. Moreover, disparities of access to health care have a large impact on COVID-19 cases. Thus, this study estimates racial segregation and disparities in testing site access and employs economic, demographic, and transportation variables at the city/town level in Massachusetts. Spatial regression models are applied to evaluate the relationships between COVID-19 incidence rate and related variables. This is the first study to apply spatial analysis methods across neighborhoods in the U.S. to examine the COVID-19 incidence rate. The findings are: (1) Residential segregations of Hispanic and Non-Hispanic Black/African Americans have a significantly positive association with COVID-19 incidence rate, indicating the higher susceptibility of COVID-19 infections among minority groups. (2) Non-Hispanic Black/African Americans have the shortest drive time to testing sites, followed by Hispanic, Non-Hispanic Asians, and Non-Hispanic Whites. The drive time to testing sites is significantly negatively associated with the COVID-19 incidence rate, implying the importance of the accessibility of testing sites by all populations. (3) Poverty rate and road density are significant explanatory variables. Importantly, overcrowding represented by more than one person per room is a significant variable found to be positively associated with COVID-19 incidence rate, suggesting the effectiveness of social distancing for reducing infection. (4) Different from the findings of previous studies, the elderly population rate is not statistically significantly correlated with the incidence rate because the elderly population in Massachusetts is less distributed in the hotspot regions of COVID-19 infections. The findings in this study provide useful insights for policymakers to propose new strategies to contain the COVID-19 transmissions in Massachusetts.


Subject(s)
COVID-19/ethnology , Health Services Accessibility , Social Segregation , African Americans , Health Status Disparities , Hispanic Americans , Humans , Incidence , Massachusetts/epidemiology
7.
International Journal of Environmental Research and Public Health ; 17(24):9528, 2020.
Article in English | ScienceDirect | ID: covidwho-984386

ABSTRACT

The U.S. has merely 4% of the world population, but contains 25% of the world’s COVID-19 cases. Since the COVID-19 outbreak in the U.S., Massachusetts has been leading other states in the total number of COVID-19 cases. Racial residential segregation is a fundamental cause of racial disparities in health. Moreover, disparities of access to health care have a large impact on COVID-19 cases. Thus, this study estimates racial segregation and disparities in testing site access and employs economic, demographic, and transportation variables at the city/town level in Massachusetts. Spatial regression models are applied to evaluate the relationships between COVID-19 incidence rate and related variables. This is the first study to apply spatial analysis methods across neighborhoods in the U.S. to examine the COVID-19 incidence rate. The findings are: (1) Residential segregations of Hispanic and Non-Hispanic Black/African Americans have a significantly positive association with COVID-19 incidence rate, indicating the higher susceptibility of COVID-19 infections among minority groups. (2) Non-Hispanic Black/African Americans have the shortest drive time to testing sites, followed by Hispanic, Non-Hispanic Asians, and Non-Hispanic Whites. The drive time to testing sites is significantly negatively associated with the COVID-19 incidence rate, implying the importance of the accessibility of testing sites by all populations. (3) Poverty rate and road density are significant explanatory variables. Importantly, overcrowding represented by more than one person per room is a significant variable found to be positively associated with COVID-19 incidence rate, suggesting the effectiveness of social distancing for reducing infection. (4) Different from the findings of previous studies, the elderly population rate is not statistically significantly correlated with the incidence rate because the elderly population in Massachusetts is less distributed in the hotspot regions of COVID-19 infections. The findings in this study provide useful insights for policymakers to propose new strategies to contain the COVID-19 transmissions in Massachusetts.

8.
Data and Information Management ; 4(3):130-147, 2020.
Article in English | ProQuest Central | ID: covidwho-826331

ABSTRACT

The COVID-19 outbreak is a global pandemic declared by the World Health Organization, with rapidly increasing cases in most countries. A wide range of research is urgently needed for understanding the COVID-19 pandemic, such as transmissibility, geographic spreading, risk factors for infections, and economic impacts. Reliable data archive and sharing are essential to jump-start innovative research to combat COVID-19. This research is a collaborative and innovative effort in building such an archive, including the collection of various data resources relevant to COVID-19 research, such as daily cases, social media, population mobility, health facilities, climate, socioeconomic data, research articles, policy and regulation, and global news. Due to the heterogeneity between data sources, our effort also includes processing and integrating different datasets based on GIS (Geographic Information System) base maps to make them relatable and comparable. To keep the data files permanent, we published all open data to the Harvard Dataverse (https://dataverse.harvard.edu/dataverse/2019ncov), an online data management and sharing platform with a permanent Digital Object Identifier number for each dataset. Finally, preliminary studies are conducted based on the shared COVID-19 datasets and revealed different spatial transmission patterns among mainland China, Italy, and the United States.

9.
Proc Natl Acad Sci U S A ; 117(42): 26151-26157, 2020 10 20.
Article in English | MEDLINE | ID: covidwho-807983

ABSTRACT

Emerging evidence suggests a resurgence of COVID-19 in the coming years. It is thus critical to optimize emergency response planning from a broad, integrated perspective. We developed a mathematical model incorporating climate-driven variation in community transmissions and movement-modulated spatial diffusions of COVID-19 into various intervention scenarios. We find that an intensive 8-wk intervention targeting the reduction of local transmissibility and international travel is efficient and effective. Practically, we suggest a tiered implementation of this strategy where interventions are first implemented at locations in what we call the Global Intervention Hub, followed by timely interventions in secondary high-risk locations. We argue that thinking globally, categorizing locations in a hub-and-spoke intervention network, and acting locally, applying interventions at high-risk areas, is a functional strategy to avert the tremendous burden that would otherwise be placed on public health and society.


Subject(s)
Communicable Disease Control/methods , Communicable Diseases, Emerging/prevention & control , Coronavirus Infections/prevention & control , Disease Transmission, Infectious/prevention & control , Global Health/trends , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Climate , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/transmission , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Forecasting , Humans , International Cooperation , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2 , Travel
SELECTION OF CITATIONS
SEARCH DETAIL
...