Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
R Soc Open Sci ; 8(12): 210865, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1583912


During the COVID-19 pandemic, governments have attempted to control infections within their territories by implementing border controls and lockdowns. While large-scale quarantine has been the most successful short-term policy, the enormous costs exerted by lockdowns over long periods are unsustainable. As such, developing more flexible policies that limit transmission without requiring large-scale quarantine is an urgent priority. Here, the dynamics of dismantled community mobility structures within US society during the COVID-19 outbreak are analysed by applying the Louvain method with modularity optimization to weekly datasets of mobile device locations. Our networks are built based on individuals' movements from February to May 2020. In a multi-scale community detection process using the locations of confirmed cases, natural break points from mobility patterns as well as high risk areas for contagion are identified at three scales. Deviations from administrative boundaries were observed in detected communities, indicating that policies informed by assumptions of disease containment within administrative boundaries do not account for high risk patterns of movement across and through these boundaries. We have designed a multi-level quarantine process that takes these deviations into account based on the heterogeneity in mobility patterns. For communities with high numbers of confirmed cases, contact tracing and associated quarantine policies informed by underlying dismantled community mobility structures is of increasing importance.

J Travel Med ; 28(7)2021 Oct 11.
Article in English | MEDLINE | ID: covidwho-1398121


BACKGROUND: Pre-pandemic empirical studies have produced mixed statistical results on the effectiveness of masks against respiratory viruses, leading to confusion that may have contributed to organizations such as the WHO and CDC initially not recommending that the general public wear masks during the coronavirus disease 2019 pandemic. METHODS: A threshold-based dose-response curve framework is used to analyse the effects of interventions on infection probabilities for both single and repeated exposure events. Empirical studies on mask effectiveness are evaluated with a statistical power analysis that includes the effect of adherence to mask usage protocols. RESULTS: When the adherence to mask usage guidelines is taken into account, the empirical evidence indicates that masks prevent disease transmission: all studies we analysed that did not find surgical masks to be effective were under-powered to such an extent that even if masks were 100% effective, the studies in question would still have been unlikely to find a statistically significant effect. We also provide a framework for understanding the effect of masks on the probability of infection for single and repeated exposures. The framework demonstrates that masks can have a disproportionately large protective effect and that more frequently wearing a mask provides super-linearly compounding protection. CONCLUSIONS: This work shows (1) that both theoretical and empirical evidence is consistent with masks protecting against respiratory infections and (2) that non-linear effects and statistical considerations regarding the percentage of exposures for which masks are worn must be taken into account when designing empirical studies and interpreting their results.

COVID-19 , Respiratory Tract Infections , Humans , Masks , Pandemics , Respiratory Tract Infections/prevention & control , SARS-CoV-2
Int J Forecast ; 2020 Oct 20.
Article in English | MEDLINE | ID: covidwho-872102


We discuss common errors and fallacies when using naive "evidence based" empiricism and point forecasts for fat-tailed variables, as well as the insufficiency of using naive first-order scientific methods for tail risk management. We use the COVID-19 pandemic as the background for the discussion and as an example of a phenomenon characterized by a multiplicative nature, and what mitigating policies must result from the statistical properties and associated risks. In doing so, we also respond to the points raised by Ioannidis et al. (2020).