Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Thromb Res ; 212: 44-50, 2022 04.
Article in English | MEDLINE | ID: covidwho-1699972

ABSTRACT

BACKGROUND: Pulmonary embolism is a known complication of coronavirus disease 2019 (COVID-19). Epidemiological population data focusing on pulmonary embolism-related mortality is limited. METHODS: Veneto is a region in Northern Italy counting 4,879,133 inhabitants in 2020. All ICD-10 codes from death certificates (1st January 2018 to 31st December 2020) were examined. Comparisons were made between 2020 (COVID-19 outbreak) and the average of the two-year period 2018-2019. All-cause, COVID-19-related and the following cardiovascular deaths have been studied: pulmonary embolism, hypertensive disease, ischemic heart disease, atrial fibrillation/flutter, and cerebrovascular diseases. RESULTS: In 2020, a total of 56,412 deaths were recorded, corresponding to a 16% (n = 7806) increase compared to the period 2018-2019. The relative percentage increase during the so-called first and second waves was 19% and 44%, respectively. Of 7806 excess deaths, COVID-19 codes were reported in 90% of death certificates. The percentage increase in pulmonary embolism-related deaths was 27% (95%CI 19-35%), 1018 deaths during the year 2020, compared to 804 mean annual deaths in the period 2018-2019. This was more evident among men, who experience an absolute increase of 147 deaths (+45%), than in women (+67 deaths; +14%). The increase was primarily driven by deaths recorded during the second wave (+91% in October-December). An excess of deaths, particularly among men and during the second wave, was also observed for other cardiovascular diseases, notably hypertensive disease, atrial fibrillation, cerebrovascular disease, and ischemic heart disease. CONCLUSIONS: We observed a considerable increase of all-cause mortality during the year 2020. This was mainly driven by COVID-19 and its complications. The relative increase in the number of pulmonary embolism-related deaths was more prominent during the second wave, suggesting a possible underdiagnosis during the first wave.


Subject(s)
COVID-19 , Pulmonary Embolism , COVID-19/complications , Female , Humans , International Classification of Diseases , Italy/epidemiology , Male , Pandemics , Pulmonary Embolism/epidemiology
2.
Viruses ; 14(2)2022 01 28.
Article in English | MEDLINE | ID: covidwho-1667344

ABSTRACT

Unselected data of nationwide studies of hospitalized patients with COVID-19 are still sparse, but these data are of outstanding interest to avoid exceeding hospital capacities and overloading national healthcare systems. Thus, we sought to analyze seasonal/regional trends, predictors of in-hospital case-fatality, and mechanical ventilation (MV) in patients with COVID-19 in Germany. We used the German nationwide inpatient samples to analyze all hospitalized patients with a confirmed COVID-19 diagnosis in Germany between 1 January and 31 December in 2020. We analyzed data of 176,137 hospitalizations of patients with confirmed COVID-19-infection. Among those, 31,607 (17.9%) died, whereby in-hospital case-fatality grew exponentially with age. Overall, age ≥ 70 years (OR 5.91, 95%CI 5.70-6.13, p < 0.001), pneumonia (OR 4.58, 95%CI 4.42-4.74, p < 0.001) and acute respiratory distress syndrome (OR 8.51, 95%CI 8.12-8.92, p < 0.001) were strong predictors of in-hospital death. Most COVID-19 patients were treated in hospitals in urban areas (n = 92,971) associated with the lowest case-fatality (17.5%), as compared to hospitals in suburban (18.3%) or rural areas (18.8%). MV demand was highest in November/December 2020 (32.3%, 20.3%) in patients between the 6th and 8th age decade. In the first age decade, 78 of 1861 children (4.2%) with COVID-19-infection were treated with MV, and five of them died (0.3%). The results of our study indicate seasonal and regional variations concerning the number of COVID-19 patients, necessity of MV, and case fatality in Germany. These findings may help to ensure the flexible allocation of intensive care (human) resources, which is essential for managing enormous societal challenges worldwide to avoid overloaded regional healthcare systems.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Hospital Mortality/trends , Hospitalization/statistics & numerical data , Inpatients/statistics & numerical data , Aged , Aged, 80 and over , Female , Germany/epidemiology , Hospitalization/trends , Humans , Intensive Care Units/statistics & numerical data , Intensive Care Units/trends , Male , Middle Aged , Respiration, Artificial/statistics & numerical data , Respiration, Artificial/trends , Risk Factors , SARS-CoV-2/pathogenicity
5.
Res Pract Thromb Haemost ; 5(5): e12520, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1355899

ABSTRACT

INTRODUCTION: Pulmonary embolism (PE) has not been accounted for as a cause of death contributing to cause-specific mortality in global reports. METHODS: We analyzed global PE-related mortality by focusing on the latest year available for each member state in the World Health Organization (WHO) mortality database, which provides age-sex-specific aggregated mortality data transmitted by national authorities for each underlying cause of death. PE-related deaths were defined by International Classification of Diseases, Tenth Revision codes for acute PE or nonfatal manifestations of venous thromboembolism (VTE). The 2001 WHO standard population served for standardization. RESULTS: We obtained data from 123 countries covering a total population of 2 602 561 422. Overall, 50 (40.6%) were European, 39 (31.7%) American, 13 (10.6%) Eastern Mediterranean, 13 (10.6%) Western Pacific, 3 (2.4%) Southeast Asian, and 2 (1.6%) African. Of 116 countries classifiable according to population income, 57 (49.1%) were high income, 42 (36.2%) upper-middle income, 14 (12.1%) lower-middle income, and 3 (2.6%) low income. A total of 18 726 382 deaths were recorded, of which 86 930 (0.46%) were attributed to PE. PE-related mortality rate increased with age in most countries. The reporting of PE-related deaths was heterogeneous, with an age-standardized mortality rate ranging from 0 to 24 deaths per 100 000 population-years. Income status only partially explained this heterogeneity. CONCLUSIONS: Reporting of PE-related mortality in official national vital registration was characterized by extreme heterogeneity across countries. These findings mandate enhanced efforts toward systematic and uniform coverage of PE-related mortality and provides a case for full recognition of PE and VTE as a primary cause of death.

7.
J Clin Med ; 10(13)2021 Jun 29.
Article in English | MEDLINE | ID: covidwho-1288928

ABSTRACT

BACKGROUND: Hemostatic abnormalities have been described in COVID-19, and pulmonary microthrombosis was consistently found at autopsy with concomitant severe lung damage. METHODS: This is a retrospective observational cross-sectional study including consecutive patients with COVID-19 pneumonia who underwent unenhanced chest CT upon admittance at the emergency room (ER) in one large academic hospital. QCT was used for the calculation of compromised lung volume (%CL). Clinical data were retrieved from patients' files. Laboratory data were obtained upon presentation at the ER. AIM: The aim of this study was to evaluate the correlation between hemostatic abnormalities and lung involvement in patients affected by COVID-19 pneumonia as described using computer-aided quantitative evaluation of chest CT (quantitative CT (QCT)). RESULTS: A total of 510 consecutive patients (68% males), aged 67 years in median, diagnosed with COVID-19 pneumonia, who underwent unenhanced CT scan upon admission to the ER, were included. In all, 115 patients had %CL > 23%; compared to those with %CL < 23%, they showed higher levels of D-dimer, fibrinogen, and CRP, greater platelet count, and longer PT ratio. Via multivariate regression analysis, BMI ≥ 30 kg/m2, D-dimer levels > 500 ng/mL, CRP > 5.0 ng/mL and PT ratio > 1.2 were found to be independent predictors of a %CL > 23% (adjusted odds ratios (95% confidence intervals): 2.1 (1.1-4.0), 3.1 (1.6-5.8), 2.4 (1.3-4.5), and 3.4 (1.4-8.5), respectively). CONCLUSIONS: Hemostatic abnormalities in patients affected by COVID-19 correlate with the severity of lung injury as measured by %CL. Our results underline the pathogenetic role of hemostasis in COVID-19 pneumonia beyond the presence of clinically evident thromboembolic complications.

8.
Hamostaseologie ; 2021 Jun 22.
Article in English | MEDLINE | ID: covidwho-1279924

ABSTRACT

The clinical spectrum of patients with coronavirus disease 2019 (COVID-19) ranges from asymptomatic cases to severe pneumonia with acute respiratory distress syndrome. COVID-19 is associated with an increased risk of thromboembolic complications, notably pulmonary embolism and deep vein thrombosis. Arterial cardiovascular complications and myocarditis have also been described in association with COVID-19, but appear to be less prevalent. In this report of a 57-year-old man with multiple splanchnic infarctions, arterial dissections and COVID-19 as the sole potential trigger, we describe a novel type of complications and put it in the context of a growing literature on this topic.

10.
Health Qual Life Outcomes ; 19(1): 40, 2021 Feb 03.
Article in English | MEDLINE | ID: covidwho-1063195

ABSTRACT

BACKGROUND: An increasing number of subjects are recovering from COVID-19, raising the need for tools to adequately assess the course of the disease and its impact on functional status. We aimed to assess the construct validity of the Post-COVID-19 Functional Status (PCFS) Scale among adult subjects with confirmed and presumed COVID-19. METHODS: Adult subjects with confirmed and presumed COVID-19, who were members of an online panel and two Facebook groups for subjects with COVID-19 with persistent symptoms, completed an online survey after the onset of infection-related symptoms. The number and intensity of symptoms were evaluated with the Utrecht Symptom Diary, health-related quality of life (HrQoL) with the 5-level EQ-5D questionnaire, impairment in work and activities with the Work Productivity and Activity Impairment questionnaire and functional status with the PCFS Scale. RESULTS: 1939 subjects were included in the analyses (85% women, 95% non-hospitalized during infection) about 3 months after the onset of infection-related symptoms. Subjects classified as experiencing 'slight', 'moderate' and 'severe' functional limitations presented a gradual increase in the number/intensity of symptoms, reduction of HrQoL and impairment in work and usual activities. No differences were found regarding the number and intensity of symptoms, HrQoL and impairment in work and usual activities between subjects classified as experiencing 'negligible' and 'no' functional limitations. We found weak-to-strong statistical associations between functional status and all domains of HrQoL (r: 0.233-0.661). Notably, the strongest association found was with the 'usual activities' domain of the 5-level EQ-5D questionnaire. CONCLUSION: We demonstrated the construct validity of the PCFS Scale in highly-symptomatic adult subjects with confirmed and presumed COVID-19, 3 months after the onset of symptoms.


Subject(s)
COVID-19/physiopathology , Convalescence , Functional Status , Quality of Life , Adult , Belgium , COVID-19/psychology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Netherlands , Reproducibility of Results , SARS-CoV-2 , Surveys and Questionnaires
11.
Eur J Intern Med ; 82: 29-37, 2020 12.
Article in English | MEDLINE | ID: covidwho-1059589

ABSTRACT

BACKGROUND: Acute pulmonary embolism (PE) has been described as a frequent and prognostically relevant complication of COVID-19 infection. AIM: We performed a systematic review and meta-analysis of the in-hospital incidence of acute PE among COVID-19 patients based on studies published within four months of COVID-19 outbreak. MATERIAL AND METHODS: Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed in abstracting data and assessing validity. We searched Medline, Scopus and Web of Science to locate all articles published up to August 1, 2020 reporting the incidence of acute PE (or lung thrombosis) in COVID-19 patients. The pooled in-hospital incidence of acute PE among COVID-19 patients was calculated using a random effects model and presenting the related 95% confidence interval (CI). Statistical heterogeneity was measured using the Higgins I2 statistic. RESULTS: We analysed data from 7178 COVID-19 patients [mean age 60.4 years] included in twenty-three studies. Among patients hospitalized in general wards and intensive care unit (ICU), the pooled in-hospital incidence of PE (or lung thrombosis) was 14.7% of cases (95% CI: 9.9-21.3%, I2=95.0%, p<0.0001) and 23.4% (95% CI:16.7-31.8%, I2=88.7%, p<0.0001), respectively. Segmental/sub-segmental pulmonary arteries were more frequently involved compared to main/lobar arteries (6.8% vs18.8%, p<0.001). Computer tomography pulmonary angiogram (CTPA) was used only in 35.3% of patients with COVID-19 infection across six studies. CONCLUSIONS: The in-hospital incidence of acute PE among COVID-19 patients is higher in ICU patients compared to those hospitalized in general wards. CTPA was rarely used suggesting a potential underestimation of PE cases.


Subject(s)
COVID-19/complications , Pulmonary Embolism/epidemiology , Acute Disease , COVID-19/diagnosis , Computed Tomography Angiography , Hospitalization/statistics & numerical data , Humans , Incidence , Intensive Care Units/statistics & numerical data , Pulmonary Embolism/diagnostic imaging
12.
Thromb Res ; 198: 135-138, 2021 02.
Article in English | MEDLINE | ID: covidwho-971736

ABSTRACT

BACKGROUND: Thrombosis and pulmonary embolism appear to be major causes of mortality in hospitalized coronavirus disease 2019 (COVID-19) patients. However, few studies have focused on the incidence of venous thromboembolism (VTE) after hospitalization for COVID-19. METHODS: In this multi-center study, we followed 1529 COVID-19 patients for at least 45 days after hospital discharge, who underwent routine telephone follow-up. In case of signs or symptoms of pulmonary embolism (PE) or deep vein thrombosis (DVT), they were invited for an in-hospital visit with a pulmonologist. The primary outcome was symptomatic VTE within 45 days of hospital discharge. RESULTS: Of 1529 COVID-19 patients discharged from hospital, a total of 228 (14.9%) reported potential signs or symptoms of PE or DVT and were seen for an in-hospital visit. Of these, 13 and 12 received Doppler ultrasounds or pulmonary CT angiography, respectively, of whom only one patient was diagnosed with symptomatic PE. Of 51 (3.3%) patients who died after discharge, two deaths were attributed to VTE corresponding to a 45-day cumulative rate of symptomatic VTE of 0.2% (95%CI 0.1%-0.6%; n = 3). There was no evidence of acute respiratory distress syndrome (ARDS) in these patients. Other deaths after hospital discharge included myocardial infarction (n = 13), heart failure (n = 9), and stroke (n = 9). CONCLUSIONS: We did not observe a high rate of symptomatic VTE in COVID-19 patients after hospital discharge. Routine extended thromboprophylaxis after hospitalization for COVID-19 may not have a net clinical benefit. Randomized trials may be warranted.


Subject(s)
COVID-19/epidemiology , Patient Discharge , Pulmonary Embolism/epidemiology , Venous Thromboembolism/epidemiology , Venous Thrombosis/epidemiology , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/mortality , COVID-19/therapy , Female , Humans , Incidence , Iran/epidemiology , Male , Middle Aged , Prospective Studies , Pulmonary Embolism/diagnosis , Pulmonary Embolism/mortality , Risk Factors , Time Factors , Venous Thromboembolism/diagnosis , Venous Thromboembolism/mortality , Venous Thrombosis/diagnosis , Venous Thrombosis/mortality
15.
Res Pract Thromb Haemost ; 4(5): 741-743, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-848185

ABSTRACT

The clinical spectrum of coronavirus disease 2019 (COVID-19) is wide, ranging from minor, nonspecific symptoms to severe pneumonia, acute respiratory distress syndrome, multiorgan involvement, and shock. In severe cases, the acute systemic inflammatory response, coagulation activation, and diffuse endothelial damage may, in combination with hypoxia, immobilization, and underlying risk factors, result in potentially life-threatening venous and arterial thrombotic events. The first data from single-center retrospective studies suggest that thrombotic events are a key aspect of COVID-19-associated morbidity and mortality. We have planned and will be launching the COvid REgistry on THROMBOSIS (CORE-THROMBOSIS), a large online registry of previously or currently hospitalized patients with COVID-19. The study aims to (i) determine the rate of acute thrombotic events in consecutive hospitalized patients with coronavirus (COVID-19); (ii) investigate the current use and trends in thromboprophylaxis regimens; and (iii) describe the use of imaging tests for the detection of cardiovascular events in patients with COVID-19.

16.
Hamostaseologie ; 40(3): 259-261, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-834934

Subject(s)
Hemostasis , Thrombosis , Humans
18.
Trials ; 21(1): 770, 2020 Sep 09.
Article in English | MEDLINE | ID: covidwho-755207

ABSTRACT

OBJECTIVES: The OVID study will demonstrate whether prophylactic-dose enoxaparin improves survival and reduces hospitalizations in symptomatic ambulatory patients aged 50 or older diagnosed with COVID-19, a novel viral disease characterized by severe systemic, pulmonary, and vessel inflammation and coagulation activation. TRIAL DESIGN: The OVID study is conducted as a multicentre open-label superiority randomised controlled trial. PARTICIPANTS: Inclusion Criteria 1. Signed patient informed consent after being fully informed about the study's background. 2. Patients aged 50 years or older with a positive test for SARS-CoV2 in the past 5 days and eligible for ambulatory treatment. 3. Presence of respiratory symptoms (i.e. cough, sore throat, or shortness of breath) or body temperature >37.5° C. 4. Ability of the patient to travel to the study centre by private transportation, performed either by an accompanying person from the same household or by the patient themselves 5. Ability to comply with standard hygiene requirements at the time of in-hospital visit, including a face mask and hand disinfectant. 6. Ability to walk from car to study centre or reach it by wheelchair transport with the help of an accompanying person from the same household also complying with standard hygiene requirements. 7. Ability to self-administer prefilled enoxaparin injections after instructions received at the study centre or availability of a person living with the patient to administer enoxaparin. Exclusion Criteria 1. Any acute or chronic condition posing an indication for anticoagulant treatment, e.g. atrial fibrillation, prior venous thromboembolism (VTE), acute confirmed symptomatic VTE, acute coronary syndrome. 2. Anticoagulant thromboprophylaxis deemed necessary in view of the patient's history, comorbidity or predisposing strong risk factors for thrombosis: a. Any of the following events occurring in the prior 30 days: fracture of lower limb, hospitalization for heart failure, hip/knee replacement, major trauma, spinal cord injury, stroke, b. previous VTE, c. histologically confirmed malignancy, which was diagnosed or treated (surgery, chemotherapy, radiotherapy) in the past 6 months, or recurrent, or metastatic, or inoperable. 3. Any clinically relevant bleeding (defined as bleeding requiring hospitalization, transfusion, surgical intervention, invasive procedures, occurring in a critical anatomical site, or causing disability) within 30 days prior to randomization or sign of acute bleeding. 4. Intracerebral bleeding at any time in the past or signs/symptoms consistent with acute intracranial haemorrhage. 5. Haemoglobin <8 g/dL and platelet count <50 x 109 cells/L confirmed by recent laboratory test (<90 days). 6. Subjects with any known coagulopathy or bleeding diathesis, including known significant liver disease associated with coagulopathy. 7. Severe renal insufficiency (baseline creatinine clearance <30 mL/min calculated using the Cockcroft-Gault formula) confirmed by recent laboratory test (<90 days). 8. Contraindications to enoxaparin therapy, including prior heparin-induced thrombocytopenia and known hypersensitivity. 9. Current use of dual antiplatelet therapy. 10. Participation in other interventional studies over the past 30 days. 11. Non-compliance or inability to adhere to treatment or lack of a family environment or support system for home treatment. 12. Cognitive impairment and/or inability to understand information provided in the study information. Patient enrolment will take place at seven Swiss centres, including five university hospitals and two large cantonal hospitals. INTERVENTION AND COMPARATOR: Patients randomized to the intervention group will receive subcutaneous enoxaparin at the recommended dose of 4,000 IU anti-Xa activity (40 mg/0.4 ml) once daily for 14 days. Patients randomized to the comparator group will receive no anticoagulation. MAIN OUTCOMES: Primary outcome: a composite of any hospitalization or all-cause death occurring within 30 days of randomization. SECONDARY OUTCOMES: (i) a composite of cardiovascular events, including deep vein thrombosis (including catheter-associated), pulmonary embolism, myocardial infarction/myocarditis, arterial ischemia including mesenteric and extremities, acute splanchnic vein thrombosis, or ischemic stroke within 14 days, 30 days, and 90 days of randomization; (ii) each component of the primary efficacy outcome, within 14 days, 30 days, and 90 days of randomization; (iii) net clinical benefit (accounting for the primary efficacy outcome, composite cardiovascular events, and major bleeding), within 14 days, 30 days, and 90 days of enrolment; (iv) primary efficacy outcome, within 14 days, and 90 days of enrolment; (v) disseminated intravascular coagulation (ISTH criteria, in-hospital diagnosis) within 14 days, 30 days, and 90 days of enrolment. RANDOMISATION: Patients will undergo block stratified randomization (by age: 50-70 vs. >70 years; and by study centre) with a randomization ratio of 1:1 with block sizes varying between 4 and 8. Randomization will be performed after the signature of the informed consent for participation and the verification of the eligibility criteria using the electronic data capture software (REDCAP, Vanderbilt University, v9.1.24). BLINDING (MASKING): In this open-label study, no blinding procedures will be used. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The sample size calculation is based on the parameters α = 0.05 (2-sided), power: 1-ß = 0.8, event rate in experimental group, pexp = 0.09 and event rate in control group, pcon = 0.15. The resulting total sample size is 920. To account for potential dropouts, the total sample size was fixed to 1000 with 500 patients in the intervention group and 500 in the control group. TRIAL STATUS: Protocol version 1.0, 14 April 2020. Protocol version 3.0, 18 May 2020 Recruiting start date: June 2020. Last Patient Last Visit: March 2021. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04400799 First Posted: May 26, 2020 Last Update Posted: July 16, 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Anticoagulants/administration & dosage , Betacoronavirus/pathogenicity , Blood Coagulation/drug effects , Coronavirus Infections/drug therapy , Enoxaparin/administration & dosage , Pneumonia, Viral/drug therapy , Thrombosis/prevention & control , Anticoagulants/adverse effects , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Enoxaparin/adverse effects , Equivalence Trials as Topic , Host-Pathogen Interactions , Humans , Multicenter Studies as Topic , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Thrombosis/blood , Thrombosis/diagnosis , Thrombosis/virology , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL