Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
American Journal of Respiratory and Critical Care Medicine ; 205:1, 2022.
Article in English | English Web of Science | ID: covidwho-1880771
4.
Topics in Antiviral Medicine ; 30(1 SUPPL):94, 2022.
Article in English | EMBASE | ID: covidwho-1880132

ABSTRACT

Background: It is imperative to investigate novel, broadly conserved coronavirus immunogens as new SARS-CoV-2 variants of concern are continually emerging. The goal of this study was to generate a broadly protective long-term vaccine candidate against potential new variants of SARS-CoV-2 and novel, outbreak coronaviruses. The vaccine immunogen spanned portions of the highly conserved RNA replication machinery (nsp12 and nsp13) (CoV.Con). The vaccine was packaged into a rhesus adenoviral vector (RhAd52.CoV.Con) with the goal of generating robust long-lived CD8+ T-cell responses. Methods: The CoV.Con immunogen was generated by aligning coronavirus sequences to determine the most conserved region. ACE2 carrier and BALB/c mice were immunized intramuscularly with 109 RhAd52.CoV.Con and boosted four weeks later. Splenocytes were harvested four weeks after boost. Cellular immunity was determined through ELIspot and intracellular cytokine stain (ICS). BALB/c mice were primed and boosted with RhAd52.CoV.Con. Four weeks post boost mice were challenged intranasally with mouse adapted SARS-CoV-2. Protection was measured by weight loss and plaque assay. Results: Four weeks post RhAd52.CoV.Con boost immunization, ACE2 carrier and BALB/c mice developed cellular immunity as shown by ELIspot (Fig 1a) and ICS. ACE2 carrier mice cellular immunity showed bias toward nsp12 while BALB/c mice showed nsp13 preference. BALB/c mice were primed and boosted with RhAd52.CoV.Con. Four weeks after boost mice were challenged with mouse adapted SARS-CoV-2. RhAd52.CoV.Con was compared against and combined with a suboptimal dose of RhAd52.S.pp at 4 and 8 weeks post injection. Protection against weight loss (Fig 1b) and viral load (Fig 1c) was minimal although increased RhAd52.S.pp protection was observed from 4 to 8 weeks post immunization. Increased RhAd52.S.pp protection corresponded to increased spike antibody binding and neutralizing titers. Conclusion: Our work investigates a highly conserved coronavirus immunogen, CoV.Con, demonstrating immunogenicity in two mouse strains. While RhAd52. CoV.Con protection in the mouse model was minimal it demonstrates a schema for generating coronavirus immunogens that can protect against multiple different viruses. This work takes the first steps towards generating a long-lived broadly protective T-cell coronavirus vaccine.

5.
PubMed; 2022.
Preprint in English | PubMed | ID: ppcovidwho-338334

ABSTRACT

Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to SARS-CoV disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse Chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6 that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2 and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species.

6.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-334706

ABSTRACT

The COVID-19 pandemic remains uncontrolled despite the rapid rollout of safe and effective SARS-CoV-2 vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. Additionally, the emergence of SARS-CoV-2 variants of concern with their potential to escape therapeutic monoclonal antibodies emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parental nucleoside of remdesivir, which targets the highly conserved RNA-dependent RNA polymerase. GS-621763 exhibited significant antiviral activity in lung cell lines and two different human primary lung cell culture systems. The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 significantly reduced viral load, lung pathology, and improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral currently in human clinical trial, proved both drugs to be similarly efficacious. These data demonstrate that therapy with oral prodrugs of remdesivir can significantly improve outcomes in SARS-CoV-2 infected mice. Thus, GS-621763 supports the exploration of GS-441524 oral prodrugs for the treatment of COVID-19 in humans.

7.
Clinical Cancer Research ; 27(6 SUPPL 1), 2021.
Article in English | EMBASE | ID: covidwho-1816903

ABSTRACT

Vimentin intermediate filament is involved in multiple steps of viral infection such as viral entry, trafficking and egress, as well as in various mechanisms of hyperinflammation such as the restraint of Treg cell functions and the activation of NLRP3 inflammasome. We evaluated a vimentin-binding small molecule compound ALD-R491 for its effects on cellular processes related to viral infection and for its efficacy in treating SARS-CoV2 infection in vitro and in vivo. In cultured cells, the compound could reduce endocytosis by 10%, endosomal trafficking by 40% and exosomal release by over 30%. In an infection system consisting of a lentiviral pseudotype bearing the SARS-CoV-2 spike protein and HEK293 cells over-expressing the human ACE2 receptor with multiplicity of infection (MOI) of 1, 10 and 100, the compound inhibited the infection up to a maximum of over 90%, with IC 50 < 50 nM, CC50 > 10 μM, and SI > 200. After oral administration of ALD-R491 in rats, the plasma concentration of the compound reached the peak (Tmax) at around 5 h with a half-life (T1/2) of about 5 h. The compound was widely distributed and enriched in tissues in vivo in rats with a volume of distribution (Vd) of over 2,000 ml/kg. The lung and the lymph nodes were among the tissues with high drug exposures. In rats receiving oral gavage of the compound at 30 mg/kg, the drug exposure in the lung and the lymph nodes maintained at levels over 1 μM from 1 h to 6 h after the oral dosing. In the syngeneic mouse tumor CT26 model, ALD-R491 was found to activate regulatory T cells (Tregs) in vivo and enhance de novo generation of Tregs in lymph nodes of the mice. In the Mouse-Adapted SARS-CoV2 model, aged mice (11-12 months) were used to provide a harder test of recovery from infection that reflects the severeness of COVID-19 in old patients. For therapeutic treatment, the mice were orally administered with the compound 24 h after the SARS-CoV2 infection once per day on Day 1, Day 2 and Day 4. At 10 mg/kg, ALD-R491 significantly reduced the body weight loss of the mice (p<0.01 on Day 5 post-infection). At both 3 mg/kg and 10 mg/kg, the compound significantly reduced the hemorrhagic score for the lungs (p<0.01 and p<0.05, respectively, on Day 5). These results indicate that vimentin intermediate filament is an effective host-directed antiviral target. Importantly, the vimentin-binding small molecule ALD-R491 impacts multiple aspects of SARS-CoV2 infection, has a favorable oral pharmacokinetics and a wide therapeutic window, and therefore may be a promising therapeutic candidate for treating COVID-19. Statement: Aluda Pharmaceuticals, Inc. has utilized the non-clinical and pre-clinical services program offered by the National Institute of Allergy and Infectious Diseases.

8.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-333816

ABSTRACT

The global COVID-19 pandemic has sparked intense interest in the rapid development of vaccines as well as animal models to evaluate vaccine candidates and to define immune correlates of protection. We recently reported a mouse-adapted SARS-CoV-2 virus strain (MA10) with the potential to infect wild-type laboratory mice, driving high levels of viral replication in respiratory tract tissues as well as severe clinical and respiratory symptoms, aspects of COVID-19 disease in humans that are important to capture in model systems. We evaluated the immunogenicity and protective efficacy of novel rhesus adenovirus serotype 52 (RhAd52) vaccines against MA10 challenge in mice. Baseline seroprevalence is lower for rhesus adenovirus vectors than for human or chimpanzee adenovirus vectors, making these vectors attractive candidates for vaccine development. We observed that RhAd52 vaccines elicited robust binding and neutralizing antibody titers, which inversely correlated with viral replication after challenge. These data support the development of RhAd52 vaccines and the use of the MA10 challenge virus to screen novel vaccine candidates and to study the immunologic mechanisms that underscore protection from SARS-CoV-2 challenge in wild-type mice. IMPORTANCE: We have developed a series of SARS-CoV-2 vaccines using rhesus adenovirus serotype 52 (RhAd52) vectors, which exhibits a lower seroprevalence than human and chimpanzee vectors, supporting their development as novel vaccine vectors or as an alternative Ad vector for boosting. We sought to test these vaccines using a recently reported mouse-adapted SARS-CoV-2 (MA10) virus to i) evaluate the protective efficacy of RhAd52 vaccines and ii) further characterize this mouse-adapted challenge model and probe immune correlates of protection. We demonstrate RhAd52 vaccines elicit robust SARS-CoV-2-specific antibody responses and protect against clinical disease and viral replication in the lungs. Further, binding and neutralizing antibody titers correlated with protective efficacy. These data validate the MA10 mouse model as a useful tool to screen and study novel vaccine candidates, as well as the development of RhAd52 vaccines for COVID-19.

9.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-333769

ABSTRACT

Early life SARS-CoV-2 vaccination has the potential to provide lifelong protection and achieve herd immunity. To evaluate SARS-CoV-2 infant vaccination, we immunized two groups of 8 infant rhesus macaques (RMs) at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein, either encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or mixed with 3M-052-SE, a TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. High magnitude S-binding IgG and neutralizing infectious dose 50 (ID 50 ) >10 3 were elicited by both vaccines. S-specific T cell responses were dominated by IL-17, IFN- gamma , or TNF- alpha . Antibody and cellular responses were stable through week 22. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines are promising pediatric SARS-CoV-2 vaccine candidates to achieve durable protective immunity. ONE-SENTENCE SUMMARY: SARS-CoV-2 vaccines are well-tolerated and highly immunogenic in infant rhesus macaques.

10.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-333686

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has now caused over 2 million deaths worldwide and continues to expand. Currently, much is unknown about functionally neutralizing human antibody responses and durability to SARS-CoV-2. Using convalescent sera collected from 101 COVID-19 recovered individuals 21-212 days after symptom onset with forty-eight additional longitudinal samples, we measured functionality and durability of serum antibodies. We also evaluated associations between individual demographic and clinical parameters with functional neutralizing antibody responses to COVID-19. We found robust antibody durability out to six months, as well as significant positive associations with the magnitude of the neutralizing antibody response and male sex. We also show that SARS-CoV-2 convalescent neutralizing antibodies are higher in individuals with cardio-metabolic comorbidities. SIGNIFICANCE: In this study we found that neutralizing antibody responses in COVID-19 convalescent individuals vary in magnitude but are durable and correlate well with RBD Ig binding antibody levels compared to other SARS-CoV-2 antigen responses. In our cohort, higher neutralizing antibody titers are independently and significantly associated with male sex compared to female sex. We also show for the first time, that higher convalescent antibody titers in male donors are associated with increased age and symptom grade. Furthermore, cardio-metabolic co-morbidities are associated with higher antibody titers independently of sex. Here, we present an in-depth evaluation of serologic, demographic, and clinical correlates of functional antibody responses and durability to SARS-CoV-2.

11.
PubMed; 2020.
Preprint in English | PubMed | ID: ppcovidwho-333566

ABSTRACT

The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans, from asymptomatic or mild disease to severe disease that can require mechanical ventilation. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from indiviuals that go on to become infected with SARS-CoV-2. Here, we utilized data from a screen of genetically diverse mice from the Collaborative Cross (CC) infected with SARS-CoV to determine whether circulating baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Further, early control of virus in the lung correlates with an increased abundance of activated CD4 and CD8 T cells and regulatory T cells prior to infections across strains. A basal propensity of T cells to express IFNg and IL17 over TNFa also correlated with early viral control. Overall, a dysregulated, pro-inflammatory signature of circulating T cells at baseline was associated with severe disease upon infection. While future studies of human samples prior to infection with SARS-CoV-2 are required, our studies in mice with SARS-CoV serve as proof of concept that circulating T cell signatures at baseline can predict clinical and virologic outcomes upon SARS-CoV infection. Identification of basal immune predictors in humans could allow for identification of individuals at highest risk of severe clinical and virologic outcomes upon infection, who may thus most benefit from available clinical interventions to restrict infection and disease. SUMMARY: We used a screen of genetically diverse mice from the Collaborative Cross infected with mouse-adapted SARS-CoV in combination with comprehensive pre-infection immunophenotyping to identify baseline circulating immune correlates of severe virologic and clinical outcomes upon SARS-CoV infection.

12.
PubMed; 2020.
Preprint in English | PubMed | ID: ppcovidwho-331914

ABSTRACT

A safe, effective, and scalable vaccine is urgently needed to halt the ongoing SARS-CoV-2 pandemic. Here, we describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 copies of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD) in a highly immunogenic array and induce neutralizing antibody titers roughly ten-fold higher than the prefusion-stabilized S ectodomain trimer despite a more than five-fold lower dose. Antibodies elicited by the nanoparticle immunogens target multiple distinct epitopes on the RBD, suggesting that they may not be easily susceptible to escape mutations, and exhibit a significantly lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the protein components and assembled nanoparticles, especially compared to the SARS-CoV-2 prefusion-stabilized S trimer, suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms for inducing potent neutralizing antibody responses and have launched cGMP manufacturing efforts to advance the lead RBD nanoparticle vaccine into the clinic.

14.
Non-conventional in English | National Technical Information Service, Grey literature | ID: grc-753724

ABSTRACT

The recurrent zoonotic spillover of coronaviruses (CoVs) into the human population underscores the need for broadly active countermeasures. We employed a directed evolution approach to engineer three SARS-CoV-2 antibodies for enhanced neutralization breadth and potency. One of the affinity-matured variants, ADG-2, displays strong binding activity to a large panel of sarbecovirus receptor binding domains (RBDs) and neutralizes representative epidemic sarbecoviruses with high potency. Structural and biochemical studies demonstrate that ADG-2 employs a distinct angle of approach to recognize a highly conserved epitope overlapping the receptor binding site. In immunocompetent mouse models of SARS and COVID-19, prophylactic administration of ADG-2 provided complete protection against respiratory burden, viral replication in the lungs, and lung pathology. Altogether, ADG-2 represents a promising broad-spectrum therapeutic candidate against clade 1 sarbecoviruses.

15.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-329443

ABSTRACT

The nose is the portal for SARS-CoV-2 infection, suggesting the nose as a target for topical antiviral therapies. Because detergents are virucidal, Johnson and Johnson's Baby Shampoo (J&J) was tested as a topical virucidal agent in SARS-CoV-2 infected subjects. Twice daily irrigation of J&J in hypertonic saline, hypertonic saline alone, or no intervention were compared (n = 24/group). Despite demonstrated safety and robust efficacy in in vitro virucidal assays, J&J irrigations had no impact on viral titers or symptom scores in treated subjects relative to controls. Similar findings were observed administering J&J to infected cultured human airway epithelia using protocols mimicking the clinical trial regimen. Additional studies of cultured human nasal epithelia demonstrated that lack of efficacy reflected pharmacokinetic failure, with the most virucidal J&J detergent components rapidly absorbed from nasal surfaces. This study emphasizes the need to assess the pharmacokinetic characteristics of virucidal agents on airway surfaces to guide clinical trials.

16.
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-329391

ABSTRACT

Background: Easily distributed oral antivirals are urgently needed to treat coronavirus disease-2019 (COVID-19), prevent progression to severe illness, and block transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report the results of a Phase 2a trial evaluating the safety, tolerability, and antiviral efficacy of molnupiravir in the treatment of COVID-19 ( ClinicalTrials.gov NCT04405570 ). Methods: Eligible participants included outpatients with confirmed SARS-CoV-2 infection and symptom onset within 7 days. Participants were randomized 1:1 to 200 mg molnupiravir or placebo, or 3:1 to molnupiravir (400 or 800 mg) or placebo, twice-daily for 5 days. Antiviral activity was assessed as time to undetectable levels of viral RNA by reverse transcriptase polymerase chain reaction and time to elimination of infectious virus isolation from nasopharyngeal swabs. Results: Among 202 treated participants, virus isolation was significantly lower in participants receiving 800 mg molnupiravir (1.9%) versus placebo (16.7%) at Day 3 (p = 0.02). At Day 5, virus was not isolated from any participants receiving 400 or 800 mg molnupiravir, versus 11.1% of those receiving placebo (p = 0.03). Time to viral RNA clearance was decreased and a greater proportion overall achieved clearance in participants administered 800 mg molnupiravir versus placebo (p = 0.01). Molnupiravir was generally well tolerated, with similar numbers of adverse events across all groups. Conclusions: Molnupiravir is the first oral, direct-acting antiviral shown to be highly effective at reducing nasopharyngeal SARS-CoV-2 infectious virus and viral RNA and has a favorable safety and tolerability profile.

17.
MEDLINE;
Preprint in English | MEDLINE | ID: ppcovidwho-328527

ABSTRACT

Monoclonal antibodies (mAbs) with neutralizing activity against SARS-CoV-2 have demonstrated clinical benefit in cases of mild to moderate SARS-CoV-2 infection, substantially reducing the risk for hospitalization and severe disease1-4. Treatment generally requires the administration of high doses of these mAbs with limited efficacy in preventing disease complications or mortality among hospitalized COVID-19 patients5. Here we report the development and evaluation of Fc-optimized anti-SARS-CoV-2 mAbs with superior potency to prevent or treat COVID-19 disease. In several animal models of COVID-19 disease6,7, we demonstrate that selective engagement of activating FcgammaRs results in improved efficacy in both preventing and treating disease-induced weight loss and mortality, significantly reducing the dose required to confer full protection upon SARS-CoV-2 challenge and treatment of pre-infected animals. Our results highlight the importance of FcgammaR pathways in driving antibody-mediated antiviral immunity, while excluding any pathogenic or disease-enhancing effects of FcgammaR engagement of anti-SARS-CoV-2 antibodies upon infection. These findings have important implications for the development of Fc-engineered mAbs with optimal Fc effector function and improved clinical efficacy against COVID-19 disease.

18.
Embase;
Preprint in English | EMBASE | ID: ppcovidwho-326839

ABSTRACT

The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib) or in advanced clinical trials. We have tested 45 FDA-approved kinase inhibitors in vitro against murine hepatitis virus (MHV) as a model of SARS-CoV-2 replication and identified 12 showing inhibition in the delayed brain tumor (DBT) cell line. Vandetanib, which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), and the RET-tyrosine kinase showed the most promising results on inhibition versus toxic effect on SARS-CoV-2-infected Caco-2 and A549-hACE2 cells (IC500.79 μM) while also showing a reduction of > 3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, TNF-α, and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved vandetanib is a potential therapeutic candidate for COVID-19 positioned for follow up in clinical trials either alone or in combination with other drugs to address the cytokine storm associated with this viral infection.

19.
MEDLINE;
Preprint in English | MEDLINE | ID: ppcovidwho-326687

ABSTRACT

The emergence of current SARS-CoV-2 variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy 1-7 . Development of broadly effective coronavirus vaccines that can mitigate these threats is needed 8, 9 . Notably, several recent studies have revealed that vaccination of recovered COVID-19 donors results in enhanced nAb responses compared to SARS-CoV-2 infection or vaccination alone 10-13 . Here, we utilized a targeted donor selection strategy to isolate a large panel of broadly neutralizing antibodies (bnAbs) to sarbecoviruses from two such donors. Many of the bnAbs are remarkably effective in neutralization against sarbecoviruses that use ACE2 for viral entry and a substantial fraction also show notable binding to non-ACE2-using sarbecoviruses. The bnAbs are equally effective against most SARS-CoV-2 VOCs and many neutralize the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor binding domain (RBD) as opposed to strain-specific nAbs to the receptor binding site that are commonly elicited in SARS-CoV-2 infection and vaccination 14-18 . Consistent with targeting of conserved sites, select RBD bnAbs exhibited in vivo protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model. The generation of a large panel of potent bnAbs provides new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and, importantly, provides a molecular basis for effective design of pan-sarbecovirus vaccines.

20.
PubMed; 2020.
Preprint in English | PubMed | ID: ppcovidwho-296990

ABSTRACT

Determinants of protective immunity against SARS-CoV-2 infection require the development of well-standardized, reproducible antibody assays to be utilized in concert with clinical trials to establish correlates of risk and protection. This need has led to the appearance of a variety of neutralization assays used by different laboratories and companies. Using plasma samples from COVID-19 convalescent individuals with mild-to-moderate disease from a localized outbreak in a single region of the western US, we compared three platforms for SARS-CoV-2 neutralization: assay with live SARS-CoV-2, pseudovirus assay utilizing lentiviral (LV) and vesicular stomatitis virus (VSV) packaging, and a surrogate ELISA test. Vero, Vero E6, HEK293T cells expressing human angiotensin converting enzyme 2 (hACE2), and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 (TMPRSS2) were evaluated. Live-virus and LV-pseudovirus assay with HEK293T cells showed similar geometric mean titers (GMTs) ranging 141-178, but VSV-pseudovirus assay yielded significantly higher GMT (310 95%CI 211-454;p < 0.001). Fifty percent neutralizing dilution (ND50) titers from live-virus and all pseudovirus assay readouts were highly correlated (Pearson r = 0.81-0.89). ND50 titers positively correlated with plasma concentration of IgG against SARS-CoV-2 spike and receptor binding domain (RBD) ( r = 0.63-0.89), but moderately correlated with nucleoprotein IgG ( r = 0.46-0.73). There was a moderate positive correlation between age and spike (Spearman's rho=0.37, p=0.02), RBD (rho=0.39, p=0.013) and nucleoprotein IgG (rho=0.45, p=0.003). ND80 showed stronger correlation with age than ND50 (ND80 rho=0.51 (p=0.001), ND50 rho=0.28 (p=0.075)). Our data demonstrate high concordance between cell-based assays with live and pseudotyped virions.

SELECTION OF CITATIONS
SEARCH DETAIL