Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Infection ; 2021 Jul 28.
Article in English | MEDLINE | ID: covidwho-1330430


OBJECTIVE: Evaluation of pulmonary function impairment after COVID-19 in persistently symptomatic and asymptomatic patients of all disease severities and characterisation of risk factors. METHODS: Patients with confirmed SARS-CoV-2 infection underwent prospective follow-up with pulmonary function testing and blood gas analysis during steady-state cycle exercise 4 months after acute illness. Pulmonary function impairment (PFI) was defined as reduction below 80% predicted of DLCOcSB, TLC, FVC, or FEV1. Clinical data were analyzed to identify risk factors for impaired pulmonary function. RESULTS: 76 patients were included, hereof 35 outpatients with mild disease and 41 patients hospitalized due to COVID-19. Sixteen patients had critical disease requiring mechanical ventilation, 25 patients had moderate-severe disease. After 4 months, 44 patients reported persisting respiratory symptoms. Significant PFI was prevalent in 40 patients (52.6%) occurring among all disease severities. The most common cause for PFI was reduced DLCOcSB (n = 39, 51.3%), followed by reduced TLC and FVC. The severity of PFI was significantly associated with mechanical ventilation (p < 0.001). Further risk factors for DLCO impairment were COPD (p < 0.001), SARS-CoV-2 antibody-Titer (p = 0.014) and in hospitalized patients CT score. A decrease of paO2 > 3 mmHg during cycle exercise occurred in 1/5 of patients after mild disease course. CONCLUSION: We characterized pulmonary function impairment in asymptomatic and persistently symptomatic patients of different severity groups of COVID-19 and identified further risk factors associated with persistently decreased pulmonary function. Remarkably, gas exchange abnormalities were revealed upon cycle exercise in some patients with mild disease courses and no preexisting pulmonary condition.

BMC Anesthesiol ; 21(1): 178, 2021 06 28.
Article in English | MEDLINE | ID: covidwho-1286811


BACKGROUND: Point-of-care lung ultrasound (LU) is an established tool in the first assessment of patients with coronavirus disease (COVID-19). Purpose of this study was to evaluate the value of lung ultrasound in COVID-19 intensive care unit (ICU) patients in predicting clinical course and outcome. METHODS: We analyzed lung ultrasound score (LUS) of all COVID-19 patients admitted from March 2020 to December 2020 to the Internal Intensive Care Unit, Ludwig-Maximilians-University (LMU) of Munich. LU was performed according to a standardized protocol at ICU admission and in case of clinical deterioration with the need for intubation. A normal lung scores 0 points, the worst LUS has 24 points. Patients were stratified in a low (0-12 points) and a high (13-24 points) lung ultrasound score group. RESULTS: The study included 42 patients, 69% of them male. The most common comorbidities were hypertension (81%) and obesity (57%). The values of pH (7.42 ± 0.09 vs 7.35 ± 0.1; p = 0.047) and paO2 (107 [80-130] vs 80 [66-93] mmHg; p = 0.034) were significantly reduced in patients of the high LUS group. Furthermore, the duration of ventilation (12.5 [8.3-25] vs 36.5 [9.8-70] days; p = 0.029) was significantly prolonged in this group. Patchy subpleural thickening (n = 38; 90.5%) and subpleural consolidations (n = 23; 54.8%) were present in most patients. Pleural effusion was rare (n = 4; 9.5%). The median total LUS was 11.9 ± 3.9 points. In case of clinical deterioration with the need for intubation, LUS worsened significantly compared to baseline LU. Twelve patients died during the ICU stay (29%). There was no difference in survival in both LUS groups (75% vs 66.7%, p = 0.559). CONCLUSIONS: LU can be a useful monitoring tool to predict clinical course but not outcome of COVID-19 ICU patients and can early recognize possible deteriorations.

COVID-19/diagnosis , COVID-19/epidemiology , Critical Care/methods , Lung/diagnostic imaging , SARS-CoV-2 , Ultrasonography/methods , Aged , COVID-19/pathology , Female , Germany/epidemiology , Humans , Male , Middle Aged , Point-of-Care Testing , Predictive Value of Tests , Prognosis , Retrospective Studies
Eur Respir J ; 58(1)2021 Jul.
Article in English | MEDLINE | ID: covidwho-1105685


A fraction of COVID-19 patients progress to a severe disease manifestation with respiratory failure and the necessity of mechanical ventilation. Identifying patients at risk is critical for optimised care and early therapeutic interventions. We investigated the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding relative to disease severity.We analysed nasopharyngeal and tracheal shedding of SARS-CoV-2 in 92 patients with diagnosed COVID-19. Upon admission, standardised nasopharyngeal swab or sputum samples were collected. If patients were mechanically ventilated, endotracheal aspirate samples were additionally obtained. Viral shedding was quantified by real-time PCR detection of SARS-CoV-2 RNA.45% (41 out of 92) of COVID-19 patients had a severe disease course with the need for mechanical ventilation (severe group). At week 1, the initial viral shedding determined from nasopharyngeal swabs showed no significant difference between nonsevere and severe cases. At week 2, a difference could be observed as the viral shedding remained elevated in severely ill patients. A time-course of C-reactive protein, interleukin-6 and procalcitonin revealed an even more protracted inflammatory response following the delayed drop of virus shedding load in severely ill patients. A significant proportion (47.8%) of patients showed evidence of prolonged viral shedding (>17 days), which was associated with severe disease courses (73.2%).We report that viral shedding does not differ significantly between severe and nonsevere COVID-19 cases upon admission to the hospital. Elevated SARS-CoV-2 shedding in the second week of hospitalisation, a systemic inflammatory reaction peaking between the second and third week, and prolonged viral shedding are associated with a more severe disease course.

COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Respiratory System , Severity of Illness Index , Virus Shedding