Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Viruses ; 14(7)2022 07 12.
Article in English | MEDLINE | ID: covidwho-1939013

ABSTRACT

The increased incidence of COVID-19 cases and deaths in Spain in March 2020 led to the declaration by the Spanish government of a state of emergency imposing strict confinement measures on the population. The objective of this study was to characterize the nasopharyngeal microbiota of children and adults and its relation to SARS-CoV-2 infection and COVID-19 severity during the pandemic lockdown in Spain. This cross-sectional study included family households located in metropolitan Barcelona, Spain, with one adult with a previous confirmed COVID-19 episode and one or more exposed co-habiting child contacts. Nasopharyngeal swabs were used to determine SARS-CoV-2 infection status, characterize the nasopharyngeal microbiota and determine common respiratory DNA/RNA viral co-infections. A total of 173 adult cases and 470 exposed children were included. Overall, a predominance of Corynebacterium and Dolosigranulum and a limited abundance of common pathobionts including Haemophilus and Streptococcus were found both among adults and children. Children with current SARS-CoV-2 infection presented higher bacterial richness and increased Fusobacterium, Streptococcus and Prevotella abundance than non-infected children. Among adults, persistent SARS-CoV-2 RNA was associated with an increased abundance of an unclassified member of the Actinomycetales order. COVID-19 severity was associated with increased Staphylococcus and reduced Dolosigranulum abundance. The stringent COVID-19 lockdown in Spain had a significant impact on the nasopharyngeal microbiota of children, reflected in the limited abundance of common respiratory pathobionts and the predominance of Corynebacterium, regardless of SARS-CoV-2 detection. COVID-19 severity in adults was associated with decreased nasopharynx levels of healthy commensal bacteria.


Subject(s)
COVID-19 , Microbiota , Viruses , Adult , Bacteria/genetics , COVID-19/epidemiology , Child , Communicable Disease Control , Cross-Sectional Studies , Humans , Microbiota/genetics , Nasopharynx , RNA, Viral/genetics , SARS-CoV-2 , Streptococcus , Viruses/genetics
2.
Gac Sanit ; 36 Suppl 1: S82-S86, 2022.
Article in Spanish | MEDLINE | ID: covidwho-1920886

ABSTRACT

In Spain, the vaccination program began in a context of high transmission and low availability of vaccines. The objective of this article is to review the vaccination program against COVID-19 in Europe (3/03/2022) and assess the obstacles, challenges and opportunities posed by the control of this disease. Five vaccines are currently available in Europe: two based on mRNA technology (Comirnaty® and Spikevax®); two based on a non-replicative vector (Vaxzevria® and Janssen); and another based on subunit S (Novavax®). Health authorities have developed comprehensive vaccination strategies prioritizing the prevention of hospitalizations and deaths. In January 2022, 90% of the population was exceeded with full vaccination and 95% coverage in people over 50 years of age. The new challenge is to achieve similar coverage in the rest of the age groups. Vaccination in children and adolescents has become a priority due to the educational and social implications derived from COVID-19 in this population. Communication strategies must be renewed and access barriers eliminated to achieve good coverage. In Spain, studies have been published that find a high effectiveness of vaccination. The main strategy for controlling the pandemic and recovering social activity is the vaccination, but everything indicates that very high levels of vaccination coverage will be necessary and to follow with the non-pharmaceutical measures. In a globalized world, COVID-19 control will only be achieved with a coordinated global strategy and technical and economic support for the vaccination strategy in resource-poor countries.


Subject(s)
COVID-19 , Influenza Vaccines , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , Child , Humans , Immunization Programs , Middle Aged , Pandemics/prevention & control , Vaccination
3.
Eur J Public Health ; 32(4): 643-647, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1758732

ABSTRACT

BACKGROUND: The COVID-19 pandemic could have negative effects on tuberculosis (TB) control. The objective was to assess the impact of the pandemic in contact tracing, TB and latent tuberculosis infection (LTBI) in contacts of patients with pulmonary TB in Catalonia (Spain). METHODS: Contact tracing was carried out in cases of pulmonary TB detected during 14 months in the pre-pandemic period (1 January 2019 to 28 February 2020) and 14 months in the pandemic period (1 March 2020 to 30 April 2021). Contacts received the tuberculin skin test and/or interferon gamma release assay and it was determined whether they had TB or LTBI. Variables associated with TB or LTBI in contacts (study period and sociodemographic variables) were analyzed using adjusted odds ratio (aOR) and the 95% confidence intervals (95% CI). RESULTS: The pre-pandemic and pandemic periods showed, respectively: 503 and 255 pulmonary TB reported cases (reduction of 50.7%); and 4676 and 1687 contacts studied (reduction of 36.1%). In these periods, the proportion of TB cases among the contacts was 1.9% (84/4307) and 2.2% (30/1381) (P = 0.608); and the proportion of LTBI was 25.3% (1090/4307) and 29.2% (403/1381) (P < 0.001). The pandemic period was associated to higher LTBI proportion (aOR = 1.3; 95% CI 1.1-1.5), taking into account the effect on LTBI of the other variables studied as sex, age, household contact and migrant status. CONCLUSIONS: COVID-19 is affecting TB control due to less exhaustive TB and LTBI case detection. An increase in LTBI was observed during the pandemic period. Efforts should be made to improve detection of TB and LTBI among contacts of TB cases.


Subject(s)
COVID-19 , Latent Tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , COVID-19/epidemiology , Contact Tracing , Humans , Latent Tuberculosis/diagnosis , Latent Tuberculosis/epidemiology , Pandemics , Tuberculin Test , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/epidemiology
4.
Vaccine ; 40(18): 2531-2534, 2022 04 20.
Article in English | MEDLINE | ID: covidwho-1740259

ABSTRACT

We describe an outbreak of SARS-CoV-2 (B.1.351) in a nursing home. At the outbreak onset 96% of residents and 76% of HCW had received two doses of BNT162b2. Twenty-eight residents (28/53) and six HCW (6/33) were infected. Infected residents had lower levels of anti-S antibodies compared to those who were not infected (157 vs 552 U/mL). Among 50 residents with available serological status, nineteen (19/25) with serum concentration < 300 U/mL and seven (7/25) with concentration > 300 U/mL acquired SARS-CoV-2 (RR 2.7 [95 %CI 1.4-5.3]). The quantification of circulating antibodies could be useful in detecting people with an impaired immune response who are at high risk of acquiring and spreading SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Nursing Homes , Vaccination
5.
PLoS One ; 16(10): e0259318, 2021.
Article in English | MEDLINE | ID: covidwho-1496537

ABSTRACT

PURPOSE: The purpose of this study was to characterize the nasopharyngeal microbiota of infants with possible and confirmed pertussis compared to healthy controls. METHODS: This prospective study included all infants <1 year with microbiologically confirmed diagnosis of pertussis attended at a University Hospital over a 12-month period. For each confirmed case, up to 2 consecutive patients within the same age range and meeting the clinical case definition of pertussis but testing PCR-negative were included as possible cases. A third group of asymptomatic infants (healthy controls) were also included. Nasopharyngeal microbiota was characterized by sequencing the V3-V4 region of the 16S rRNA gene. Common respiratory DNA/RNA viral co-infection was tested by multiplex PCR. RESULTS: Twelve confirmed cases, 21 possible cases and 9 healthy controls were included. Confirmed whooping cough was primarily driven by detection of Bordetella with no other major changes on nasopharyngeal microbiota. Possible cases had limited abundance or absence of Bordetella and a distinctive microbiota with lower bacterial richness and diversity and higher rates of viral co-infection than both confirmed cases and healthy controls. Bordetella reads determined by 16S rRNA gene sequencing were found in all 12 confirmed cases (100%), 3 out of the 21 possible cases (14.3%) but in any healthy control. CONCLUSION: This study supports the usefulness of 16S rRNA gene sequencing for improved sensitivity on pertussis diagnosis compared to real-time PCR and to understand other microbial changes occurring in the nasopharynx in children <1 year old with suspected whooping cough compared to healthy controls.


Subject(s)
Microbiota , Whooping Cough/microbiology , Bordetella/genetics , Bordetella/isolation & purification , Bordetella/pathogenicity , Case-Control Studies , Female , Humans , Infant , Male , Nasal Cavity/microbiology , Pharynx/microbiology , RNA, Ribosomal, 16S/genetics , Whooping Cough/diagnosis
6.
Viruses ; 13(8)2021 08 12.
Article in English | MEDLINE | ID: covidwho-1355050

ABSTRACT

We aimed to assess the duration of nasopharyngeal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA persistence in adults self-confined at home after acute infection; and to identify the associations of SARS-CoV-2 persistence with respiratory virus co-detection and infection transmission. A cross-sectional intra-household study was conducted in metropolitan Barcelona (Spain) during the time period of April to June 2020. Every adult who was the first family member reported as SARS-CoV-2-positive by reverse transcription polymerase chain reaction (RT-PCR) as well as their household child contacts had nasopharyngeal swabs tested by a targeted SARS-CoV-2 RT-PCR and a multiplex viral respiratory panel after a 15 day minimum time lag. Four-hundred and four households (404 adults and 708 children) were enrolled. SARS-CoV-2 RNA was detected in 137 (33.9%) adults and 84 (11.9%) children. Rhinovirus/Enterovirus (RV/EV) was commonly found (83.3%) in co-infection with SARS-CoV-2 in adults. The mean duration of SARS-CoV-2 RNA presence in adults' nasopharynx was 52 days (range 26-83 days). The persistence of SARS-CoV-2 was significantly associated with RV/EV co-infection (adjusted odds ratio (aOR) 9.31; 95% CI 2.57-33.80) and SARS-CoV-2 detection in child contacts (aOR 2.08; 95% CI 1.24-3.51). Prolonged nasopharyngeal SARS-CoV-2 RNA persistence beyond the acute infection phase was frequent in adults quarantined at home during the first epidemic wave; which was associated with RV/EV co-infection and could enhance intra-household infection transmission.


Subject(s)
COVID-19/complications , COVID-19/virology , Coinfection , Enterovirus Infections/complications , Picornaviridae Infections/complications , SARS-CoV-2/isolation & purification , Adolescent , Adult , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/transmission , COVID-19 Nucleic Acid Testing , Child , Child, Preschool , Cross-Sectional Studies , Enterovirus/genetics , Enterovirus/isolation & purification , Family Health , Female , Humans , Infant , Male , Middle Aged , Nasopharynx/virology , Quarantine , RNA, Viral/analysis , Rhinovirus/genetics , Rhinovirus/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL