Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-332687

ABSTRACT

Diagnostic assays currently used to monitor the efficacy of COVID-19 vaccines measure levels of antibodies to the receptor-binding domain of ancestral SARS-CoV-2 (RBDwt). However, the predictive value for protection against new variants of concern (VOCs) has not been firmly established. Here, we used bead-based arrays and flow cytometry to measure binding of antibodies to spike proteins and receptor-binding domains (RBDs) from VOCs in 12,000 sera. Effects of sera on RBD-ACE2 interactions were measured as a proxy for neutralizing antibodies. The samples were obtained from healthy individuals or patients on immunosuppressive therapy who had received two to four doses of COVID-19 vaccines and from COVID-19 convalescents. The results show that anti-RBDwt titers correlate with the levels of binding- and neutralizing antibodies against the Alpha, Beta, Gamma, Delta, Epsilon and Omicron variants. The benefit of multiplexed analysis lies in the ability to measure a wide range of anti-RBD titers using a single dilution of serum for each assay. The reactivity patterns also yield an internal reference for neutralizing activity and binding antibody units per milliliter (BAU/ml). Results obtained with sera from vaccinated healthy individuals and patients confirmed and extended results from previous studies on time-dependent waning of antibody levels and effects of immunosuppressive agents. We conclude that anti-RBDwt titers correlate with levels of neutralizing antibodies against VOCs and propose that our method may be implemented to enhance the precision and throughput of immunomonitoring.

2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331822

ABSTRACT

Diagnostic assays currently used to monitor the efficacy of COVID-19 vaccines measure levels of antibodies to the receptor-binding domain of ancestral SARS-CoV-2 (RBDwt). However, the predictive value for protection against new variants of concern (VOCs) has not been firmly established. Here, we used bead-based arrays and flow cytometry to measure binding of antibodies to spike proteins and receptor-binding domains (RBDs) from VOCs in 12,000 sera. Effects of sera on RBD-ACE2 interactions were measured as a proxy for neutralizing antibodies. The samples were obtained from healthy individuals or patients on immunosuppressive therapy who had received two to four doses of COVID-19 vaccines and from COVID-19 convalescents. The results show that anti-RBDwt titers correlate with the levels of binding- and neutralizing antibodies against the Alpha, Beta, Gamma, Delta, Epsilon and Omicron variants. The benefit of multiplexed analysis lies in the ability to measure a wide range of anti-RBD titers using a single dilution of serum for each assay. The reactivity patterns also yield an internal reference for neutralizing activity and binding antibody units per milliliter (BAU/ml). Results obtained with sera from vaccinated healthy individuals and patients confirmed and extended results from previous studies on time-dependent waning of antibody levels and effects of immunosuppressive agents. We conclude that anti-RBDwt titers correlate with levels of neutralizing antibodies against VOCs and propose that our method may be implemented to enhance the precision and throughput of immunomonitoring.

3.
J Intern Med ; 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1714240

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) is primarily a respiratory infection, mounting evidence suggests that the gastrointestinal tract is involved in the disease, with gut barrier dysfunction and gut microbiota alterations being related to disease severity. Whether these alterations persist and are related to long-term respiratory dysfunction remains unknown. METHODS: Plasma was collected during hospital admission and after 3 months from the NOR-Solidarity trial (n = 181) and analyzed for markers of gut barrier dysfunction and inflammation. At the 3-month follow-up, pulmonary function was assessed by measuring the diffusing capacity of the lungs for carbon monoxide (DLCO ). Rectal swabs for gut microbiota analyses were collected (n = 97) and analyzed by sequencing the 16S rRNA gene. RESULTS: Gut microbiota diversity was reduced in COVID-19 patients with respiratory dysfunction, defined as DLCO below the lower limit of normal 3 months after hospitalization. These patients also had an altered global gut microbiota composition, with reduced relative abundance of 20 bacterial taxa and increased abundance of five taxa, including Veillonella, potentially linked to fibrosis. During hospitalization, increased plasma levels of lipopolysaccharide-binding protein (LBP) were strongly associated with respiratory failure, defined as pO2 /fiO2 (P/F ratio) <26.6 kPa. LBP levels remained elevated during and after hospitalization and were associated with low-grade inflammation and respiratory dysfunction after 3 months. CONCLUSION: Respiratory dysfunction after COVID-19 is associated with altered gut microbiota and persistently elevated LBP levels. Our results should be regarded as hypothesis generating, pointing to a potential gut-lung axis that should be further investigated in relation to long-term pulmonary dysfunction and long COVID.

4.
Platelets ; : 1-5, 2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1713376

ABSTRACT

Thromboembolic events are frequent and associated with poor outcome in severe COVID-19 disease. Anti-PF4/polyanion antibodies are related to heparin-induced thrombocytopenia (HIT) and thrombus formation, but data on these antibodies in unselected COVID-19 populations are scarce. We assessed the presence of anti-PF4/polyanion antibodies in prospectively collected serum from an unselected cohort of hospitalized COVID-19 patients and evaluated if elevated levels could give prognostic information on ICU admission and respiratory failure (RF), were associated with markers of inflammation, endothelial activation, platelet activation, coagulation and fibrosis and were associated with long-term pulmonary CT changes. Five out of 65 patients had anti-PF4/polyanion reactivity with OD ≥0.200. These patients had more severe disease as reflected by ICU admission without any evidence of HIT. They also had signs of enhanced inflammation and fibrinogenesis as reflected by elevated ferritin and osteopontin, respectively, during the first 10 days of hospitalization. Increased ferritin and osteopontin persisted in these patients at 3 months follow-up, concomitant with pulmonary CT pathology. Our finding shows that the presence of anti-PF4/polyanion antibodies in unselected hospitalized COVID-19 patients was not related to HIT, but was associated with disease severity, inflammation, and pulmonary pathology after 3 months.

6.
Ann Intern Med ; 174(9): 1261-1269, 2021 09.
Article in English | MEDLINE | ID: covidwho-1547664

ABSTRACT

BACKGROUND: New treatment modalities are urgently needed for patients with COVID-19. The World Health Organization (WHO) Solidarity trial showed no effect of remdesivir or hydroxychloroquine (HCQ) on mortality, but the antiviral effects of these drugs are not known. OBJECTIVE: To evaluate the effects of remdesivir and HCQ on all-cause, in-hospital mortality; the degree of respiratory failure and inflammation; and viral clearance in the oropharynx. DESIGN: NOR-Solidarity is an independent, add-on, randomized controlled trial to the WHO Solidarity trial that included biobanking and 3 months of clinical follow-up (ClinicalTrials.gov: NCT04321616). SETTING: 23 hospitals in Norway. PATIENTS: Eligible patients were adults hospitalized with confirmed SARS-CoV-2 infection. INTERVENTION: Between 28 March and 4 October 2020, a total of 185 patients were randomly assigned and 181 were included in the full analysis set. Patients received remdesivir (n = 42), HCQ (n = 52), or standard of care (SoC) (n = 87). MEASUREMENTS: In addition to the primary end point of WHO Solidarity, study-specific outcomes were viral clearance in oropharyngeal specimens, the degree of respiratory failure, and inflammatory variables. RESULTS: No significant differences were seen between treatment groups in mortality during hospitalization. There was a marked decrease in SARS-CoV-2 load in the oropharynx during the first week overall, with similar decreases and 10-day viral loads among the remdesivir, HCQ, and SoC groups. Remdesivir and HCQ did not affect the degree of respiratory failure or inflammatory variables in plasma or serum. The lack of antiviral effect was not associated with symptom duration, level of viral load, degree of inflammation, or presence of antibodies against SARS-CoV-2 at hospital admittance. LIMITATION: The trial had no placebo group. CONCLUSION: Neither remdesivir nor HCQ affected viral clearance in hospitalized patients with COVID-19. PRIMARY FUNDING SOURCE: National Clinical Therapy Research in the Specialist Health Services, Norway.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Hydroxychloroquine/therapeutic use , Viral Load/drug effects , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Antibodies, Viral/blood , Biomarkers/blood , COVID-19/complications , COVID-19/mortality , Cause of Death , Female , Hospital Mortality , Humans , Inflammation/virology , Male , Middle Aged , Norway/epidemiology , Oropharynx/virology , Respiratory Insufficiency/virology , SARS-CoV-2/immunology , Severity of Illness Index , Standard of Care , Treatment Outcome
7.
Sci Rep ; 11(1): 23205, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545647

ABSTRACT

The association between pulmonary sequelae and markers of disease severity, as well as pro-fibrotic mediators, were studied in 108 patients 3 months after hospital admission for COVID-19. The COPD assessment test (CAT-score), spirometry, diffusion capacity of the lungs (DLCO), and chest-CT were performed at 23 Norwegian hospitals included in the NOR-SOLIDARITY trial, an open-labelled, randomised clinical trial, investigating the efficacy of remdesivir and hydroxychloroquine (HCQ). Thirty-eight percent had a CAT-score ≥ 10. DLCO was below the lower limit of normal in 29.6%. Ground-glass opacities were present in 39.8% on chest-CT, parenchymal bands were found in 41.7%. At admission, low pO2/FiO2 ratio, ICU treatment, high viral load, and low antibody levels, were predictors of a poorer pulmonary outcome after 3 months. High levels of matrix metalloproteinase (MMP)-9 during hospitalisation and at 3 months were associated with persistent CT-findings. Except for a negative effect of remdesivir on CAT-score, we found no effect of remdesivir or HCQ on long-term pulmonary outcomes. Three months after hospital admission for COVID-19, a high prevalence of respiratory symptoms, reduced DLCO, and persistent CT-findings was observed. Low pO2/FiO2 ratio, ICU-admission, high viral load, low antibody levels, and high levels of MMP-9 were associated with a worse pulmonary outcome.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/drug therapy , Hydroxychloroquine/adverse effects , Lung Diseases/pathology , Matrix Metalloproteinase 9/metabolism , SARS-CoV-2/drug effects , Viral Load , Adenosine Monophosphate/adverse effects , Aged , Alanine/adverse effects , Antibody Formation , Antimalarials/adverse effects , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19/virology , Female , Hospitalization , Humans , Lung Diseases/chemically induced , Lung Diseases/enzymology , Lung Diseases/virology , Male , Middle Aged , Severity of Illness Index
11.
J Neurol ; 268(10): 3574-3583, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1141418

ABSTRACT

OBJECTIVE: To test the hypotheses that blood biomarkers for nervous system injury, serum concentrations of neurofilament light chain protein (NfL) and glial fibrillary acidic protein (GFAp) can serve as biomarkers for disease severity in COVID-19 patients. METHODS: Forty-seven inpatients with confirmed COVID-19 had blood samples drawn on admission for assessing serum biomarkers of CNS injury by Single molecule array (Simoa), NfL and GFAp. Concentrations of NfL and GFAp were analyzed in relation to symptoms, clinical signs, inflammatory biomarkers and clinical outcomes. We used multivariate linear models to test for differences in biomarker concentrations in the subgroups, accounting for confounding effects. RESULTS: In total, 21% (n = 10) of the patients were admitted to an intensive care unit, and the overall mortality rate was 13% (n = 6). Non-survivors had higher serum concentrations of NfL (p < 0.001) upon admission than patients who were discharged alive both in adjusted analyses (p = 2.6 × 10-7) and unadjusted analyses (p = 0.001). The concentrations of NfL in non-survivors increased over repeated measurements; whereas, the concentrations in survivors were stable. The GFAp concentration was also significantly higher in non-survivors than survivors (p = 0.02). CONCLUSION: Increased concentrations of NfL and GFAp in COVID-19 patients on admission may indicate increased mortality risk. Measurement of blood biomarkers for nervous system injury can be useful to detect and monitor CNS injury in COVID-19.


Subject(s)
COVID-19 , Biomarkers , Glial Fibrillary Acidic Protein , Humans , Intermediate Filaments , Neurofilament Proteins , Prognosis , SARS-CoV-2
13.
N Engl J Med ; 384(6): 497-511, 2021 02 11.
Article in English | MEDLINE | ID: covidwho-953632

ABSTRACT

BACKGROUND: World Health Organization expert groups recommended mortality trials of four repurposed antiviral drugs - remdesivir, hydroxychloroquine, lopinavir, and interferon beta-1a - in patients hospitalized with coronavirus disease 2019 (Covid-19). METHODS: We randomly assigned inpatients with Covid-19 equally between one of the trial drug regimens that was locally available and open control (up to five options, four active and the local standard of care). The intention-to-treat primary analyses examined in-hospital mortality in the four pairwise comparisons of each trial drug and its control (drug available but patient assigned to the same care without that drug). Rate ratios for death were calculated with stratification according to age and status regarding mechanical ventilation at trial entry. RESULTS: At 405 hospitals in 30 countries, 11,330 adults underwent randomization; 2750 were assigned to receive remdesivir, 954 to hydroxychloroquine, 1411 to lopinavir (without interferon), 2063 to interferon (including 651 to interferon plus lopinavir), and 4088 to no trial drug. Adherence was 94 to 96% midway through treatment, with 2 to 6% crossover. In total, 1253 deaths were reported (median day of death, day 8; interquartile range, 4 to 14). The Kaplan-Meier 28-day mortality was 11.8% (39.0% if the patient was already receiving ventilation at randomization and 9.5% otherwise). Death occurred in 301 of 2743 patients receiving remdesivir and in 303 of 2708 receiving its control (rate ratio, 0.95; 95% confidence interval [CI], 0.81 to 1.11; P = 0.50), in 104 of 947 patients receiving hydroxychloroquine and in 84 of 906 receiving its control (rate ratio, 1.19; 95% CI, 0.89 to 1.59; P = 0.23), in 148 of 1399 patients receiving lopinavir and in 146 of 1372 receiving its control (rate ratio, 1.00; 95% CI, 0.79 to 1.25; P = 0.97), and in 243 of 2050 patients receiving interferon and in 216 of 2050 receiving its control (rate ratio, 1.16; 95% CI, 0.96 to 1.39; P = 0.11). No drug definitely reduced mortality, overall or in any subgroup, or reduced initiation of ventilation or hospitalization duration. CONCLUSIONS: These remdesivir, hydroxychloroquine, lopinavir, and interferon regimens had little or no effect on hospitalized patients with Covid-19, as indicated by overall mortality, initiation of ventilation, and duration of hospital stay. (Funded by the World Health Organization; ISRCTN Registry number, ISRCTN83971151; ClinicalTrials.gov number, NCT04315948.).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Hydroxychloroquine/therapeutic use , Interferon beta-1a/therapeutic use , Lopinavir/therapeutic use , Adenosine Monophosphate/therapeutic use , Aged , Alanine/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , COVID-19/mortality , Drug Therapy, Combination , Female , Hospital Mortality , Hospitalization , Humans , Intention to Treat Analysis , Kaplan-Meier Estimate , Length of Stay , Male , Middle Aged , Respiration, Artificial , Treatment Failure
15.
Proc Natl Acad Sci U S A ; 117(40): 25018-25025, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-780138

ABSTRACT

Respiratory failure in the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is hypothesized to be driven by an overreacting innate immune response, where the complement system is a key player. In this prospective cohort study of 39 hospitalized coronavirus disease COVID-19 patients, we describe systemic complement activation and its association with development of respiratory failure. Clinical data and biological samples were obtained at admission, days 3 to 5, and days 7 to 10. Respiratory failure was defined as PO2/FiO2 ratio of ≤40 kPa. Complement activation products covering the classical/lectin (C4d), alternative (C3bBbP) and common pathway (C3bc, C5a, and sC5b-9), the lectin pathway recognition molecule MBL, and antibody serology were analyzed by enzyme-immunoassays; viral load by PCR. Controls comprised healthy blood donors. Consistently increased systemic complement activation was observed in the majority of COVID-19 patients during hospital stay. At admission, sC5b-9 and C4d were significantly higher in patients with than without respiratory failure (P = 0.008 and P = 0.034). Logistic regression showed increasing odds of respiratory failure with sC5b-9 (odds ratio 31.9, 95% CI 1.4 to 746, P = 0.03) and need for oxygen therapy with C4d (11.7, 1.1 to 130, P = 0.045). Admission sC5b-9 and C4d correlated significantly to ferritin (r = 0.64, P < 0.001; r = 0.69, P < 0.001). C4d, sC5b-9, and C5a correlated with antiviral antibodies, but not with viral load. Systemic complement activation is associated with respiratory failure in COVID-19 patients and provides a rationale for investigating complement inhibitors in future clinical trials.


Subject(s)
Betacoronavirus/immunology , Complement Activation , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Respiratory Insufficiency/immunology , Aged , Biomarkers/blood , COVID-19 , Case-Control Studies , Coronavirus Infections/blood , Coronavirus Infections/complications , Female , Host-Pathogen Interactions/immunology , Humans , Male , Mannose-Binding Lectin/blood , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Respiratory Insufficiency/virology , SARS-CoV-2 , Viral Load
16.
J Allergy Clin Immunol ; 147(1): 92-98, 2021 01.
Article in English | MEDLINE | ID: covidwho-779084

ABSTRACT

BACKGROUND: The pathogenesis of coronavirus disease 2019 (COVID-19) is still incompletely understood, but it seems to involve immune activation and immune dysregulation. OBJECTIVE: We examined the parameters of activation of different leukocyte subsets in COVID-19-infected patients in relation to disease severity. METHODS: We analyzed plasma levels of myeloperoxidase (a marker of neutrophil activation), soluble (s) CD25 (sCD25) and soluble T-cell immunoglobulin mucin domain-3 (sTIM-3) (markers of T-cell activation and exhaustion), and sCD14 and sCD163 (markers of monocyte/macrophage activation) in 39 COVID-19-infected patients at hospital admission and 2 additional times during the first 10 days in relation to their need for intensive care unit (ICU) treatment. RESULTS: Our major findings were as follows: (1) severe clinical outcome (ICU treatment) was associated with high plasma levels of sTIM-3 and myeloperoxidase, suggesting activated and potentially exhausted T cells and activated neutrophils, respectively; (2) in contrast, sCD14 and sCD163 showed no association with need for ICU treatment; and (3) levels of sCD25, sTIM-3, and myeloperoxidase were inversely correlated with degree of respiratory failure, as assessed by the ratio of Pao2 to fraction of inspired oxygen, and were positively correlated with the cardiac marker N-terminal pro-B-type natriuretic peptide. CONCLUSION: Our findings suggest that neutrophil activation and, in particular, activated T cells may play an important role in the pathogenesis of COVID-19 infection, suggesting that T-cell-targeted treatment options and downregulation of neutrophil activation could be of importance in this disorder.


Subject(s)
COVID-19/blood , Hepatitis A Virus Cellular Receptor 2/blood , SARS-CoV-2/metabolism , Aged , Antigens, CD/blood , Antigens, Differentiation, Myelomonocytic/blood , Female , Humans , Interleukin-2 Receptor alpha Subunit/blood , Lipopolysaccharide Receptors/blood , Lymphocyte Activation , Male , Middle Aged , Receptors, Cell Surface/blood , Severity of Illness Index , T-Lymphocytes/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL