Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Zoonoses Public Health ; 2022 Apr 14.
Article in English | MEDLINE | ID: covidwho-1794548

ABSTRACT

SARS-CoV-2 infection has been described in a wide range of species, including domestic animals such as dogs and cats. Illness in dogs is usually self-limiting, and further diagnostics may not be pursued if clinical signs resolve or they respond to empirical treatment. As new variants emerge, the clinical presentation and role in transmission may vary in animals. This report highlights different clinical presentations and immunological responses in two SARS-CoV-2 Delta-variant-positive dogs with similar exposure to the same fully vaccinated human with a SARS-CoV-2 infection and emphasizes the need for active surveillance and additional One Health research on SARS-CoV-2 variant infections in companion animals and other species.

2.
Vet Pathol ; : 3009858221079665, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1714567

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes respiratory disease in mink similar to human COVID-19. We characterized the pathological findings in 72 mink from US farms with SARS-CoV-2 outbreaks, localized SARS-CoV-2 and its host cellular receptor angiotensin-converting enzyme 2 (ACE2) in mink respiratory tissues, and evaluated the utility of various test methods and specimens for SARS-CoV-2 detection in necropsy tissues. Of SARS-CoV-2-positive animals found dead, 74% had bronchiolitis and diffuse alveolar damage (DAD). Of euthanized SARS-CoV-2-positive animals, 72% had only mild interstitial pneumonia or minimal nonspecific lung changes (congestion, edema, macrophages); similar findings were seen in SARS-CoV-2-negative animals. Suppurative rhinitis, lymphocytic perivascular inflammation in the lungs, and lymphocytic infiltrates in other tissues were common in both SARS-CoV-2-positive and SARS-CoV-2-negative animals. In formalin-fixed paraffin-embedded (FFPE) upper respiratory tract (URT) specimens, conventional reverse transcription-polymerase chain reaction (cRT-PCR) was more sensitive than in situ hybridization (ISH) or immunohistochemistry (IHC) for detection of SARS-CoV-2. FFPE lung specimens yielded less detection of virus than FFPE URT specimens by all test methods. By IHC and ISH, virus localized extensively to epithelial cells in the nasal turbinates, and prominently within intact epithelium; olfactory mucosa was mostly spared. The SARS-CoV-2 receptor ACE2 was extensively detected by IHC within turbinate epithelium, with decreased detection in lower respiratory tract epithelium and alveolar macrophages. This study expands on the knowledge of the pathology and pathogenesis of natural SARS-CoV-2 infection in mink and supports their further investigation as a potential animal model of SARS-CoV-2 infection in humans.

3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311058

ABSTRACT

The ongoing global pandemic caused by coronavirus disease 2019 (COVID-19) has once again demonstrated the significance of the Coronaviridae family in causing human disease outbreaks. As SARS-CoV-2 was first detected in December 2019, information on its tropism, host range, and clinical presentation in animals is limited. Given the limited information, data from other coronaviruses may be useful to inform scientific inquiry, risk assessment and decision-making. We review the endemic and emerging alpha- and betacoronavirus infections of wildlife, livestock, and companion animals, and provide information on the receptor usage, known hosts, and clinical signs associated with each host for 15 coronaviruses discovered in people and animals. This information can be used to guide implementation of a One Health approach that involves human health, animal health, environmental, and other relevant partners in developing strategies for preparedness, response, and control to current and future coronavirus disease threats.

4.
Viruses ; 13(10)2021 10 07.
Article in English | MEDLINE | ID: covidwho-1463837

ABSTRACT

In summer 2020, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was detected on mink farms in Utah. An interagency One Health response was initiated to assess the extent of the outbreak and included sampling animals from on or near affected mink farms and testing them for SARS-CoV-2 and non-SARS coronaviruses. Among the 365 animals sampled, including domestic cats, mink, rodents, raccoons, and skunks, 261 (72%) of the animals harbored at least one coronavirus. Among the samples that could be further characterized, 127 alphacoronaviruses and 88 betacoronaviruses (including 74 detections of SARS-CoV-2 in mink) were identified. Moreover, at least 10% (n = 27) of the coronavirus-positive animals were found to be co-infected with more than one coronavirus. Our findings indicate an unexpectedly high prevalence of coronavirus among the domestic and wild free-roaming animals tested on mink farms. These results raise the possibility that mink farms could be potential hot spots for future trans-species viral spillover and the emergence of new pandemic coronaviruses.


Subject(s)
Alphacoronavirus/isolation & purification , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2/isolation & purification , Alphacoronavirus/classification , Alphacoronavirus/genetics , Animals , Animals, Domestic/virology , Animals, Wild/virology , Cats , Disease Hotspot , Female , Male , Mephitidae/virology , Mice , Mink/virology , Raccoons/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Utah/epidemiology
5.
Viruses ; 13(9)2021 09 12.
Article in English | MEDLINE | ID: covidwho-1411082

ABSTRACT

Approximately 67% of U.S. households have pets. Limited data are available on SARS-CoV-2 in pets. We assessed SARS-CoV-2 infection in pets during a COVID-19 household transmission investigation. Pets from households with ≥1 person with laboratory-confirmed COVID-19 were eligible for inclusion from April-May 2020. We enrolled 37 dogs and 19 cats from 34 households. All oropharyngeal, nasal, and rectal swabs tested negative by rRT-PCR; one dog's fur swabs (2%) tested positive by rRT-PCR at the first sampling. Among 47 pets with serological results, eight (17%) pets (four dogs, four cats) from 6/30 (20%) households had detectable SARS-CoV-2 neutralizing antibodies. In households with a seropositive pet, the proportion of people with laboratory-confirmed COVID-19 was greater (median 79%; range: 40-100%) compared to households with no seropositive pet (median 37%; range: 13-100%) (p = 0.01). Thirty-three pets with serologic results had frequent daily contact (≥1 h) with the index patient before the person's COVID-19 diagnosis. Of these 33 pets, 14 (42%) had decreased contact with the index patient after diagnosis and none were seropositive; of the 19 (58%) pets with continued contact, four (21%) were seropositive. Seropositive pets likely acquired infection after contact with people with COVID-19. People with COVID-19 should restrict contact with pets and other animals.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Pets/virology , SARS-CoV-2 , Animals , COVID-19/history , COVID-19/transmission , Cats , Dogs , Family Characteristics , History, 21st Century , Humans , Pets/history , Phylogeny , Population Surveillance , RNA, Viral , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , Utah/epidemiology , Viral Zoonoses/epidemiology , Wisconsin/epidemiology
6.
MMWR Morb Mortal Wkly Rep ; 69(23): 710-713, 2020 Jun 12.
Article in English | MEDLINE | ID: covidwho-1389844

ABSTRACT

On April 22, CDC and the U.S. Department of Agriculture (USDA) reported cases of two domestic cats with confirmed infection with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). These are the first reported companion animals (including pets and service animals) with SARS-CoV-2 infection in the United States, and among the first findings of SARS-CoV-2 symptomatic companion animals reported worldwide. These feline cases originated from separate households and were epidemiologically linked to suspected or confirmed human COVID-19 cases in their respective households. Notification of presumptive positive animal test results triggered a One Health* investigation by state and federal partners, who determined that no further transmission events to other animals or persons had occurred. Both cats fully recovered. Although there is currently no evidence that animals play a substantial role in spreading COVID-19, CDC advises persons with suspected or confirmed COVID-19 to restrict contact with animals during their illness and to monitor any animals with confirmed SARS-CoV-2 infection and separate them from other persons and animals at home (1).


Subject(s)
Betacoronavirus/isolation & purification , Cat Diseases/diagnosis , Cat Diseases/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Pandemics/veterinary , Pets/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/veterinary , Animals , COVID-19 , Cats , Coronavirus Infections/transmission , Female , Humans , Male , New York , Pneumonia, Viral/transmission , SARS-CoV-2 , Zoonoses
7.
Viruses ; 13(5)2021 05 19.
Article in English | MEDLINE | ID: covidwho-1234836

ABSTRACT

Understanding the ecological and epidemiological roles of pets in the transmission of SARS-CoV-2 is critical for animal and human health, identifying household reservoirs, and predicting the potential enzootic maintenance of the virus. We conducted a longitudinal household transmission study of 76 dogs and cats living with at least one SARS-CoV-2-infected human in Texas and found that 17 pets from 25.6% of 39 households met the national case definition for SARS-CoV-2 infections in animals. This includes three out of seventeen (17.6%) cats and one out of fifty-nine (1.7%) dogs that were positive by RT-PCR and sequencing, with the virus successfully isolated from the respiratory swabs of one cat and one dog. Whole-genome sequences of SARS-CoV-2 obtained from all four PCR-positive animals were unique variants grouping with genomes circulating among people with COVID-19 in Texas. Re-sampling showed persistence of viral RNA for at least 25 d-post initial test. Additionally, seven out of sixteen (43.8%) cats and seven out of fifty-nine (11.9%) dogs harbored SARS-CoV-2 neutralizing antibodies upon initial sampling, with relatively stable or increasing titers over the 2-3 months of follow-up and no evidence of seroreversion. The majority (82.4%) of infected pets were asymptomatic. 'Reverse zoonotic' transmission of SARS-CoV-2 from infected people to animals may occur more frequently than recognized.


Subject(s)
COVID-19/epidemiology , COVID-19/veterinary , Pets/virology , Animals , Antibodies, Neutralizing/immunology , Cat Diseases/epidemiology , Cat Diseases/immunology , Cat Diseases/virology , Cats/virology , Dog Diseases/epidemiology , Dog Diseases/immunology , Dog Diseases/virology , Dogs/virology , Humans , Longitudinal Studies , Pets/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Texas/epidemiology
8.
Transbound Emerg Dis ; 2021 May 06.
Article in English | MEDLINE | ID: covidwho-1218180

ABSTRACT

As part of a longitudinal household transmission study of pets living with persons with COVID-19 in Texas, two pets were confirmed to be infected with the SARS-CoV-2 B.1.1.7 variant of concern (VOC). The pets were a dog and a cat from the same household, sampled two days after their owner tested positive for COVID-19. The oral, nasal and fur swabs for both pets tested positive for SARS-CoV-2 by qRT-PCR and consensus whole-genome sequences from the dog and cat were 100% identical and matched the B.1.1.7 VOC. Virus was isolated from the cat's nasal swab. One month after initial detection of infection, the pets were re-tested twice at which time only the fur swabs (both pets) and oral swab (dog only) remained positive, and neutralizing antibodies for SARS-CoV-2 were present in both animals. Sneezing by both pets was noted by the owner in the weeks between initial and follow-up testing. This study documents the first detection of B.1.1.7. in companion animals in the United States, and the first genome recovery and isolation of B.1.1.7 variant of concern globally in any animal.

SELECTION OF CITATIONS
SEARCH DETAIL