Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Frontiers in Immunology ; 13:968991, 2022.
Article in English | MEDLINE | ID: covidwho-2022753

ABSTRACT

Background: SARS-CoV-2 induces a spectrum of clinical conditions ranging from asymptomatic infection to life threatening severe disease. Host microRNAs have been involved in the cytokine storm driven by SARS-CoV-2 infection and proposed as candidate biomarkers for COVID-19. Methods: To discover signatures of circulating miRNAs associated with COVID-19, disease severity and mortality, small RNA-sequencing was performed on serum samples collected from 89 COVID-19 patients (34 severe, 29 moderate, 26 mild) at hospital admission and from 45 healthy controls (HC). To search for possible sources of miRNAs, investigation of differentially expressed (DE) miRNAs in relevant human cell types in vitro. Results: COVID-19 patients showed upregulation of miRNAs associated with lung disease, vascular damage and inflammation and downregulation of miRNAs that inhibit pro-inflammatory cytokines and chemokines, angiogenesis, and stress response. Compared with mild/moderate disease, patients with severe COVID-19 had a miRNA signature indicating a profound impairment of innate and adaptive immune responses, inflammation, lung fibrosis and heart failure. A subset of the DE miRNAs predicted mortality. In particular, a combination of high serum miR-22-3p and miR-21-5p, which target antiviral response genes, and low miR-224-5p and miR-155-5p, targeting pro-inflammatory factors, discriminated severe from mild/moderate COVID-19 (AUROC 0.88, 95% CI 0.80-0.95, p<0.0001), while high leukocyte count and low levels of miR-1-3p, miR-23b-3p, miR-141-3p, miR-155-5p and miR-4433b-5p predicted mortality with high sensitivity and specificity (AUROC 0.95, 95% CI 0.89-1.00, p<0.0001). In vitro experiments showed that some of the DE miRNAs were modulated directly by SARS-CoV-2 infection in permissive lung epithelial cells. Conclusions: We discovered circulating miRNAs associated with COVID-19 severity and mortality. The identified DE miRNAs provided clues on COVID-19 pathogenesis, highlighting signatures of impaired interferon and antiviral responses, inflammation, organ damage and cardiovascular failure as associated with severe disease and death.

3.
Clinical Neuropathology ; 40(4):S110, 2021.
Article in English | EMBASE | ID: covidwho-1325931

ABSTRACT

Introduction: SARS-CoV-2 is a novel strain of Coronavirus that mainly targets the respiratory tract, but with important implications also for the CNS. Data deriving from autopsy studies supports the neuroinvasive potential of SARS-CoV-2, even though infection appears to be limited to sparse cells within the brainstem and was not associated with the severity of neuropathological changes. Objectives: In the following study, we assess the neuropathological changes of 14 patients who died following a diagnosis of Sars-CoV-2 infection in Padova, Italy from March 2020 to January 2021. Methods: The cerebrum, cerebellum, brainstem, cranial nerves and meninges were sampled and histopathological evaluation was performed by histochemistry and immunohistochemistry for GFAP, CD8, CD61, CD68 and HLA-DR antibodies. SARS-CoV-2 proteins and RNA were investigated through immunohistochemistry, RTPCR and in-situ hybridization. Results: Small vessel thromboses were identified in two patients, while fresh territory ischaemic lesions were identified in three patients. Astrogliosis and microglial activation were more pronounced at the level of the brainstem in all subjects. SARS-CoV-2 proteins were found within the brainstem and meninges of 4 patients. In one patient, SARS-CoV-2 proteins and RNA were identified throughout the whole rostrocaudal extent of the brainstem and basal ganglia, with prominent involvement of neurons and oligodendrocytes in the mesencephalon, rostral pons and medulla. Conclusion: Although limited by the number of our cohort, the study contributes to define the neuroinvasive potential of SARS-CoV-2 within the CNS. In line with available literature, SARS-CoV-2 invasion does not appear to correlate with the severity of neuropathological changes.

4.
Topics in Antiviral Medicine ; 29(1):240, 2021.
Article in English | EMBASE | ID: covidwho-1250591

ABSTRACT

Background: SARS-CoV-2 infected children are often asymptomatic or paucisymptomatic compared to adults. The immune response plays a pivotal role in dictating the clinical outcome in infected adults, but it is still poorly investigated in the pediatric population. Methods: Fifty-seven family clusters of SARS-CoV-2, attending the Department for Women's and Children's Health (University of Padova), were enrolled between March and September 2020, for a total 209 subjects. SARS-CoV-2 infection was confirmed in 155 patients (SARS+: 93 ≥15 years [group A];34 children ≥6-15 years [group B];28 children <6 years [group C]) by virus molecular detection and/or serology. In 41 available samples, measurement of SARS-CoV-2 levels (VL) was performed by an in-house quantitative One-Step ddPCR method. A blood sample was obtained at a median [IQR] of 2.8 [2.1-3.7] months after baseline (symptom's onset and/or first positive virus detection). Neutralizing antibodies (Nabs) were detected by a Plaque Reduction Neutralization Test (PRNT). Activated (CD8+CD38+HLA-DR+) and regulatory T cells (T-regs;CD4+Foxp3+CD127-CD25+) were analyzed by flow cytometry. Results: VL did not differ by age (18507 [326-339315], 6723 [3427-114587], and 21106 [162-152500] copies/5μl, in group A, B and C, respectively;overall, p=0.955). Group C had the highest PRNT titer compared to the other groups (overall, p<0.0001). Activated CD8 and regulatory T cells were significantly higher in SARS+ than in SARS- subjects (p<0.001). CD8 activated cells were significantly higher in group A compared to the other groups (p<0.001;Figure a), and were inversely correlated with PRNT titer (group A: rs=-0.527, p<0.0001;B: rs=-0.494 p=0.003;C: rs=-0.547 p<0.0001;Figure b). Conversely, T-regs were significantly higher in group C compared to the others (p<0.001;Figure c), and were positively correlated with PRNT values in children (group C: rs=0.662 p=0.0001, B: rs =0.532 p=0.001;A: rs =0.160, p=0.125;Figure d). Conclusion: Levels of SARS-CoV-2 did not differ among age classes, but adults displayed a higher T cell activation and a lower production of anti-SARS Nabs than children. Conversely, younger infected children had the highest production of anti-SARS Nabs and the lowest non-specific T cell activation, most likely due to their higher expression of regulatory T cells.

5.
Topics in Antiviral Medicine ; 29(1):240-241, 2021.
Article in English | EMBASE | ID: covidwho-1250171

ABSTRACT

Background: Recent evidences suggest that SARS-CoV-2 neutralizing antibodies (Nabs) may persist over time, however lack of knowledge still regards the pediatric population. Methods: A single-centre, prospective observational study evaluated family clusters of COVID-19 attending the Pediatric Department, University Hospital of Padua (Italy). Confirmed COVID-19 was defined by positive SARS-CoV-2 molecular detection and/or serology;patients/family symptom's and virological positivity were considered to define the infection onset (baseline). Blood samples were analyzed in pair to detect Nabs through Plaque Reduction Neutralization Test (PRNT), and IgG through chemiluminescent immuneenzymatic assay (CLIA) MAGLUMI™ 2000 Plus;IgG >1.1 kAU/L and/or PRNT≥1:10 were considered positive. SARS-CoV-2 viral load (VL) was quantified by multiplex quantitative assay based on One-Step RT-ddPCR. Geometric mean titers (GMT) and 95% Confidence Intervals of IgG/PRNT were evaluated, stratified by age and time from baseline to sample collection. Trends over time of immune-virological response were assessed. P-value <0.05 was considered statistically significant. Results: Among 213 subjects (57 families) evaluated, 155 had confirmed COVID-19 including 73 (47%) children/older siblings of 8 years median age (IQR 4-13) and 82 (53%) parents aged 42 years (IQR 34-46);93.5% had asymptomatic/mild COVID-19. From the cumulative analysis of 194 blood samples, Nabs persisted over a median period of 95 days (IQR, 67-133) from baseline. Children showed significantly higher NAbs than older subjects, with children <3 years ranging from a 4-fold difference at 1-2 months to 8.8-fold difference at 3-6 months after baseline, compared to adults (table). The longitudinal assessment of 42 subjects sampled at 60 days (SD+/-9.9) and at 150 days (SD+/-24.2) showed a 2-fold increase in NAbs in children <6 years (PRNT 144, 95% C.I. 74.42-277.94 versus 303, 95% C.I. 196.43-468.57) and a substantial stability in Nabs among older subjects. CLIA IgG significantly decreased over time for all age classes, becoming negative in 13/42 subjects (31%), compared to 1/42 subjects detected by PRNT. Among 32 individuals checked for VL within 4 days from baseline, VL directly correlated with PRNT titers in subjects >15 years (Pearson Coefficient =0.70, p=0,0349) but not in pediatric cases. Conclusion: Asymptomatic/mild COVID-19 disease triggers in children a superior and persistent humoral response compared to adults.

SELECTION OF CITATIONS
SEARCH DETAIL