Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Tropical Medicine (16879686) ; : 2019/01/01 00:00:00.000, 2023.
Article in English | Academic Search Complete | ID: covidwho-2231717

ABSTRACT

Despite the rigorous global efforts to control SARS-CoV-2 transmission, it continues to pose a serious threat to humans with the frequent emergence of new variants. Thus, robust therapeutics to combat the virus are a desperate need. The SARS-CoV-2 spike (S) protein is an important target protein as it mediates the entry of the virus inside the host cells, which is initiated by the binding of the receptor-binding domain (RBD) to its cognate receptor, angiotensin-converting enzyme 2 (ACE-2). Herein, the inhibition potential of several naturally occurring coumarins was investigated against the spike proteins of SARS-CoV-2 variants using computational approaches. Molecular docking studies revealed 26 coumarins with better binding energies than the reference ligands, molnupiravir and ceftazidime, against the S-RBD of the omicron variant. The top 10 best-docked coumarins were further analyzed to understand their binding interactions against the spike proteins of other variants (wild-type, Alpha, Beta, Gamma, and Delta), and these studies also demonstrated decent binding energies. Physicochemical, QSAR, and pharmacokinetics analyses of the coumarins revealed wedelolactone as the best inhibitor of the spike protein with ideal Lipinski's drug-likeness and optimal ADMET properties. Furthermore, coarse-grained molecular dynamics (MD) simulation studies of spike protein-wedelolactone complexes validated the stable binding of wedelolactone in the respective binding pockets. As an outcome, wedelolactone could be utilized to develop a potent drug candidate against COVID-19 by blocking the viral entry into the host cell. [ FROM AUTHOR]

2.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2163532

ABSTRACT

Despite ongoing vaccination programs against COVID-19 around the world, cases of infection are still rising with new variants. This infers that an effective antiviral drug against COVID-19 is crucial along with vaccinations to decrease cases. A potential target of such antivirals could be the membrane components of the causative pathogen, SARS-CoV-2, for instance spike (S) protein. In our research, we have deployed in vitro screening of crude extracts of seven ethnomedicinal plants against the spike receptor-binding domain (S1-RBD) of SARS-CoV-2 using an enzyme-linked immunosorbent assay (ELISA). Following encouraging in vitro results for Tinospora cordifolia, in silico studies were conducted for the 14 reported antiviral secondary metabolites isolated from T. cordifolia-a species widely cultivated and used as an antiviral drug in the Himalayan country of Nepal-using Genetic Optimization for Ligand Docking (GOLD), Molecular Operating Environment (MOE), and BIOVIA Discovery Studio. The molecular docking and binding energy study revealed that cordifolioside-A had a higher binding affinity and was the most effective in binding to the competitive site of the spike protein. Molecular dynamics (MD) simulation studies using GROMACS 5.4.1 further assayed the interaction between the potent compound and binding sites of the spike protein. It revealed that cordifolioside-A demonstrated better binding affinity and stability, and resulted in a conformational change in S1-RBD, hence hindering the activities of the protein. In addition, ADMET analysis of the secondary metabolites from T. cordifolia revealed promising pharmacokinetic properties. Our study thus recommends that certain secondary metabolites of T. cordifolia are possible medicinal candidates against SARS-CoV-2.


Subject(s)
COVID-19 , Plants, Medicinal , Humans , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism , Molecular Docking Simulation , Plants, Medicinal/metabolism , Altitude , Nepal , Antiviral Agents/chemistry , Protein Binding , Molecular Dynamics Simulation
3.
Journal of Chemistry ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-1932846

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, has been a global concern. While there have been some vaccines and drugs, the rapid emergence of variants due to mutations has threatened public health. As the de novo drug development process is expensive and time-consuming, repurposing existing antiviral drugs against SARS-CoV-2 is an alternative and promising approach to mitigate the current situation. Several studies have indicated that some natural products exhibit inhibitory activities against SARS-CoV-2. This study is aimed at analyzing the potential of natural alkaloids, using various computational tools, as drug candidates against SARS-CoV-2. The molecular docking analysis predicted that naturally occurring alkaloids can bind with RNA-dependent RNA-polymerase (RdRP). The QSAR analysis was conducted by using the way2drug/PASS online web resource, and the pharmacokinetics and toxicity properties of these alkaloids were predicted using pkCSM, SwissADME, and ProTox-II webserver. Among the different alkaloids studied, neferine and berbamine were repurposed as potential drug candidates based on their binding affinity and interactions with RdRP. Further, molecular dynamics simulation of 90 ns revealed the conformational stability of the neferine-RdRP complex.

SELECTION OF CITATIONS
SEARCH DETAIL