Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Ann Intern Med ; 2021 Jan 12.
Article in English | MEDLINE | ID: covidwho-1022199

ABSTRACT

BACKGROUND: Nasopharyngeal swabs are the primary sampling method used for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but they require a trained health care professional and extensive personal protective equipment. PURPOSE: To determine the difference in sensitivity for SARS-CoV-2 detection between nasopharyngeal swabs and saliva and estimate the incremental cost per additional SARS-CoV-2 infection detected with nasopharyngeal swabs. DATA SOURCES: Embase, Medline, medRxiv, and bioRxiv were searched from 1 January to 1 November 2020. Cost inputs were from nationally representative sources in Canada and were converted to 2020 U.S. dollars. STUDY SELECTION: Studies including at least 5 paired nasopharyngeal swab and saliva samples and reporting diagnostic accuracy for SARS-CoV-2 detection. DATA EXTRACTION: Data were independently extracted using standardized forms, and study quality was assessed using QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2). DATA SYNTHESIS: Thirty-seven studies with 7332 paired samples were included. Against a reference standard of a positive result on either sample, the sensitivity of saliva was 3.4 percentage points lower (95% CI, 9.9 percentage points lower to 3.1 percentage points higher) than that of nasopharyngeal swabs. Among persons with previously confirmed SARS-CoV-2 infection, saliva's sensitivity was 1.5 percentage points higher (CI, 7.3 percentage points lower to 10.3 percentage points higher) than that of nasopharyngeal swabs. Among persons without a previous SARS-CoV-2 diagnosis, saliva was 7.9 percentage points less (CI, 14.7 percentage points less to 0.8 percentage point more) sensitive. In this subgroup, if testing 100 000 persons with a SARS-CoV-2 prevalence of 1%, nasopharyngeal swabs would detect 79 more (95% uncertainty interval, 5 fewer to 166 more) persons with SARS-CoV-2 than saliva, but with an incremental cost per additional infection detected of $8093. LIMITATION: The reference standard was imperfect, and saliva collection procedures varied. CONCLUSION: Saliva sampling seems to be a similarly sensitive and less costly alternative that could replace nasopharyngeal swabs for collection of clinical samples for SARS-CoV-2 testing. PRIMARY FUNDING SOURCE: McGill Interdisciplinary Initiative in Infection and Immunity. (PROSPERO: CRD42020203415).

3.
Am J Trop Med Hyg ; 103(3): 1065-1066, 2020 09.
Article in English | MEDLINE | ID: covidwho-874752

ABSTRACT

GeneXpert® Edge (GX-Edge) is a new point-of-care platform not yet tested in the field. In this proof-of-concept study conducted for the diagnosis of tuberculosis in communities living alongside two large rivers of the Brazilian Amazon, we demonstrate that GX-Edge implemented in boats to offer onsite testing is a feasible strategy to investigate potentially devastating diseases such as tuberculosis in difficult-to-reach populations, such as riverside communities.


Subject(s)
Molecular Diagnostic Techniques/methods , Point-of-Care Systems , Tuberculosis/diagnosis , Brazil , Delivery of Health Care , Feasibility Studies , Humans
4.
CMAJ ; 192(40): E1146-E1155, 2020 10 05.
Article in English | MEDLINE | ID: covidwho-751000

ABSTRACT

BACKGROUND: Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely passive, which impedes epidemic control. We defined active testing strategies for SARS-CoV-2 using reverse transcription polymerase chain reaction (RT-PCR) for groups at increased risk of acquiring SARS-CoV-2 in all Canadian provinces. METHODS: We identified 5 groups who should be prioritized for active RT-PCR testing: contacts of people who are positive for SARS-CoV-2, and 4 at-risk populations - hospital employees, community health care workers and people in long-term care facilities, essential business employees, and schoolchildren and staff. We estimated costs, human resources and laboratory capacity required to test people in each group or to perform surveillance testing in random samples. RESULTS: During July 8-17, 2020, across all provinces in Canada, an average of 41 751 RT-PCR tests were performed daily; we estimated this required 5122 personnel and cost $2.4 million per day ($67.8 million per month). Systematic contact tracing and testing would increase personnel needs 1.2-fold and monthly costs to $78.9 million. Conducted over a month, testing all hospital employees would require 1823 additional personnel, costing $29.0 million; testing all community health care workers and persons in long-term care facilities would require 11 074 additional personnel and cost $124.8 million; and testing all essential employees would cost $321.7 million, requiring 25 965 added personnel. Testing the larger population within schools over 6 weeks would require 46 368 added personnel and cost $816.0 million. Interventions addressing inefficiencies, including saliva-based sampling and pooling samples, could reduce costs by 40% and personnel by 20%. Surveillance testing in population samples other than contacts would cost 5% of the cost of a universal approach to testing at-risk populations. INTERPRETATION: Active testing of groups at increased risk of acquiring SARS-CoV-2 appears feasible and would support the safe reopening of the economy and schools more broadly. This strategy also appears affordable compared with the $169.2 billion committed by the federal government as a response to the pandemic as of June 2020.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/economics , Coronavirus Infections/diagnosis , Coronavirus Infections/economics , Mass Screening/economics , Pandemics/economics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/economics , Canada , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Humans , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Real-Time Polymerase Chain Reaction/economics , Risk Assessment/economics , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL