Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Heart ; 108(12): 923-931, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1741654

ABSTRACT

OBJECTIVE: To evaluate antithrombotic (AT) use in individuals with atrial fibrillation (AF) and at high risk of stroke (CHA2DS2-VASc score ≥2) and investigate whether pre-existing AT use may improve COVID-19 outcomes. METHODS: Individuals with AF and CHA2DS2-VASc score ≥2 on 1 January 2020 were identified using electronic health records for 56 million people in England and were followed up until 1 May 2021. Factors associated with pre-existing AT use were analysed using logistic regression. Differences in COVID-19-related hospitalisation and death were analysed using logistic and Cox regression in individuals with pre-existing AT use versus no AT use, anticoagulants (AC) versus antiplatelets (AP), and direct oral anticoagulants (DOACs) versus warfarin. RESULTS: From 972 971 individuals with AF (age 79 (±9.3), female 46.2%) and CHA2DS2-VASc score ≥2, 88.0% (n=856 336) had pre-existing AT use, 3.8% (n=37 418) had a COVID-19 hospitalisation and 2.2% (n=21 116) died, followed up to 1 May 2021. Factors associated with no AT use included comorbidities that may contraindicate AT use (liver disease and history of falls) and demographics (socioeconomic status and ethnicity). Pre-existing AT use was associated with lower odds of death (OR=0.92, 95% CI 0.87 to 0.96), but higher odds of hospitalisation (OR=1.20, 95% CI 1.15 to 1.26). AC versus AP was associated with lower odds of death (OR=0.93, 95% CI 0.87 to 0.98) and higher hospitalisation (OR=1.17, 95% CI 1.11 to 1.24). For DOACs versus warfarin, lower odds were observed for hospitalisation (OR=0.86, 95% CI 0.82 to 0.89) but not for death (OR=1.00, 95% CI 0.95 to 1.05). CONCLUSIONS: Pre-existing AT use may be associated with lower odds of COVID-19 death and, while not evidence of causality, provides further incentive to improve AT coverage for eligible individuals with AF.


Subject(s)
Atrial Fibrillation , COVID-19 , Stroke , Aged , Anticoagulants/adverse effects , Atrial Fibrillation/complications , Atrial Fibrillation/drug therapy , Atrial Fibrillation/epidemiology , COVID-19/epidemiology , Female , Fibrinolytic Agents , Humans , Risk Assessment , Risk Factors , Stroke/etiology , Warfarin
2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-324881

ABSTRACT

Background: Understanding the spectrum and course of biological responses to coronavirus disease 2019 (COVID-19) may have important therapeutic implications. We sought to characterise biological responses among patients hospitalised with severe COVID-19 based on their serial physiological and blood biomarker values.Methods and Findings: We performed a retrospective cohort study of 1335 patients hospitalised with laboratory-confirmed COVID-19 (median age 70 years, 56% male), between 1st March and 30th April, 2020. Latent profile analysis was performed on serial physiological and blood biomarkers. Patient characteristics, comorbidities and rates of death and admission to intensive care, were compared between the latent classes. A five class solution provided the best fit. Class 1 “Typical response” exhibited a moderately elevated and rising C-reactive protein (CRP), stable lymphopaenia, and the lowest rates of 14-day adverse outcomes. Class 2 “Rapid hyperinflammatory response” comprised older patients, with higher admission white cell and neutrophil counts, which declined over time, and were accompanied by a very high and rising CRP and platelet count, and the greatest risk of mortality. Class 3 “Progressive inflammatory response” was similar to the typical response except for a higher and rising CRP, though similar mortality rate. Class 4 “Inflammatory response with kidney injury” had prominent lymphopaenia, moderately elevated (and rising) CRP, and severe renal failure. Class 5 “Hyperinflammatory response with kidney injury” comprised older patients, with a very high and rising CRP, and severe renal failure that attenuated over time. Physiological measures did not substantially vary between classes at baseline or early admission.Conclusions and Relevance: Our identification of five distinct classes of biomarker profiles provides empirical evidence for heterogeneous biological responses to COVID-19. Early hyperinflammatory responses and kidney injury may signify unique pathophysiology that requires targeted therapy.Funding Statement: This paper represents independent research part-funded by the National Institute for Health Research (NIHR) Biomedical Research Centres at South London and Maudsley NHS Foundation Trust, London AI Medical Imaging Centre for Value-Based Healthcare, and Guy’s & St Thomas’ NHS Foundation Trust, both with King’s College London.Declaration of Interests: JTHT received research support and funding from InnovateUK, Bristol-Myers-Squibb, iRhythm Technologies, and holds shares <£5,000 in Glaxo Smithkline and Biogen. All other authors declare that they have no competing interests.Ethics Approval Statement: This project was conducted under London South East Research Ethics Committee (reference 18/LO/2048) approval granted to the King’s Electronic Records Research Interface (KERRI);specific work on COVID-19 research was reviewed with expert patient input on a virtual committee with Caldicott Guardian oversight.

3.
IEEE J Biomed Health Inform ; 26(1): 423-435, 2022 01.
Article in English | MEDLINE | ID: covidwho-1666255

ABSTRACT

The ability to perform accurate prognosis is crucial for proactive clinical decision making, informed resource management and personalised care. Existing outcome prediction models suffer from a low recall of infrequent positive outcomes. We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission and readmission from time-series of vital signs and laboratory results obtained within the first 24 hours of hospital admission. The stacked ensemble platform comprises two components: a) an unsupervised LSTM Autoencoder that learns an optimal representation of the time-series, using it to differentiate the less frequent patterns which conclude with an adverse event from the majority patterns that do not, and b) a gradient boosting model, which relies on the constructed representation to refine prediction by incorporating static features. The model is used to assess a patient's risk of adversity and provides visual justifications of its prediction. Results of three case studies show that the model outperforms existing platforms in ICU and general ward settings, achieving average Precision-Recall Areas Under the Curve (PR-AUCs) of 0.891 (95% CI: 0.878-0.939) for mortality and 0.908 (95% CI: 0.870-0.935) in predicting ICU admission and readmission.


Subject(s)
Electronic Health Records , Machine Learning , Hospitalization , Humans , Length of Stay , ROC Curve , Retrospective Studies
4.
PLoS One ; 16(8): e0255748, 2021.
Article in English | MEDLINE | ID: covidwho-1372005

ABSTRACT

BACKGROUND: Prediction models should be externally validated to assess their performance before implementation. Several prediction models for coronavirus disease-19 (COVID-19) have been published. This observational cohort study aimed to validate published models of severity for hospitalized patients with COVID-19 using clinical and laboratory predictors. METHODS: Prediction models fitting relevant inclusion criteria were chosen for validation. The outcome was either mortality or a composite outcome of mortality and ICU admission (severe disease). 1295 patients admitted with symptoms of COVID-19 at Kings Cross Hospital (KCH) in London, United Kingdom, and 307 patients at Oslo University Hospital (OUH) in Oslo, Norway were included. The performance of the models was assessed in terms of discrimination and calibration. RESULTS: We identified two models for prediction of mortality (referred to as Xie and Zhang1) and two models for prediction of severe disease (Allenbach and Zhang2). The performance of the models was variable. For prediction of mortality Xie had good discrimination at OUH with an area under the receiver-operating characteristic (AUROC) 0.87 [95% confidence interval (CI) 0.79-0.95] and acceptable discrimination at KCH, AUROC 0.79 [0.76-0.82]. In prediction of severe disease, Allenbach had acceptable discrimination (OUH AUROC 0.81 [0.74-0.88] and KCH AUROC 0.72 [0.68-0.75]). The Zhang models had moderate to poor discrimination. Initial calibration was poor for all models but improved with recalibration. CONCLUSIONS: The performance of the four prediction models was variable. The Xie model had the best discrimination for mortality, while the Allenbach model had acceptable results for prediction of severe disease.


Subject(s)
COVID-19/pathology , Models, Statistical , Aged , Area Under Curve , COVID-19/mortality , COVID-19/virology , Cohort Studies , Female , Hospital Mortality , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Norway , Prognosis , ROC Curve , SARS-CoV-2/isolation & purification , Severity of Illness Index , United Kingdom
5.
BMC Cardiovasc Disord ; 21(1): 327, 2021 07 03.
Article in English | MEDLINE | ID: covidwho-1295438

ABSTRACT

BACKGROUND: The relative association between cardiovascular (CV) risk factors, such as diabetes and hypertension, established CV disease (CVD), and susceptibility to CV complications or mortality in COVID-19 remains unclear. METHODS: We conducted a cohort study of consecutive adults hospitalised for severe COVID-19 between 1st March and 30th June 2020. Pre-existing CVD, CV risk factors and associations with mortality and CV complications were ascertained. RESULTS: Among 1721 patients (median age 71 years, 57% male), 349 (20.3%) had pre-existing CVD (CVD), 888 (51.6%) had CV risk factors without CVD (RF-CVD), 484 (28.1%) had neither. Patients with CVD were older with a higher burden of non-CV comorbidities. During follow-up, 438 (25.5%) patients died: 37% with CVD, 25.7% with RF-CVD and 16.5% with neither. CVD was independently associated with in-hospital mortality among patients < 70 years of age (adjusted HR 2.43 [95% CI 1.16-5.07]), but not in those ≥ 70 years (aHR 1.14 [95% CI 0.77-1.69]). RF-CVD were not independently associated with mortality in either age group (< 70 y aHR 1.21 [95% CI 0.72-2.01], ≥ 70 y aHR 1.07 [95% CI 0.76-1.52]). Most CV complications occurred in patients with CVD (66%) versus RF-CVD (17%) or neither (11%; p < 0.001). 213 [12.4%] patients developed venous thromboembolism (VTE). CVD was not an independent predictor of VTE. CONCLUSIONS: In patients hospitalised with COVID-19, pre-existing established CVD appears to be a more important contributor to mortality than CV risk factors in the absence of CVD. CVD-related hazard may be mediated, in part, by new CV complications. Optimal care and vigilance for destabilised CVD are essential in this patient group. Trial registration n/a.


Subject(s)
COVID-19 , Cardiovascular Diseases , Diabetes Mellitus/epidemiology , Hospital Mortality , Hypertension/epidemiology , Venous Thromboembolism , Age Factors , Aged , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , Cardiovascular Diseases/complications , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cohort Studies , Female , Heart Disease Risk Factors , Humans , Male , Mortality , Outcome and Process Assessment, Health Care , Risk Assessment/methods , Risk Assessment/statistics & numerical data , SARS-CoV-2/isolation & purification , United Kingdom/epidemiology , Venous Thromboembolism/diagnosis , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology
6.
J Am Med Inform Assoc ; 28(4): 791-800, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-1142659

ABSTRACT

OBJECTIVE: Risk prediction models are widely used to inform evidence-based clinical decision making. However, few models developed from single cohorts can perform consistently well at population level where diverse prognoses exist (such as the SARS-CoV-2 [severe acute respiratory syndrome coronavirus 2] pandemic). This study aims at tackling this challenge by synergizing prediction models from the literature using ensemble learning. MATERIALS AND METHODS: In this study, we selected and reimplemented 7 prediction models for COVID-19 (coronavirus disease 2019) that were derived from diverse cohorts and used different implementation techniques. A novel ensemble learning framework was proposed to synergize them for realizing personalized predictions for individual patients. Four diverse international cohorts (2 from the United Kingdom and 2 from China; N = 5394) were used to validate all 8 models on discrimination, calibration, and clinical usefulness. RESULTS: Results showed that individual prediction models could perform well on some cohorts while poorly on others. Conversely, the ensemble model achieved the best performances consistently on all metrics quantifying discrimination, calibration, and clinical usefulness. Performance disparities were observed in cohorts from the 2 countries: all models achieved better performances on the China cohorts. DISCUSSION: When individual models were learned from complementary cohorts, the synergized model had the potential to achieve better performances than any individual model. Results indicate that blood parameters and physiological measurements might have better predictive powers when collected early, which remains to be confirmed by further studies. CONCLUSIONS: Combining a diverse set of individual prediction models, the ensemble method can synergize a robust and well-performing model by choosing the most competent ones for individual patients.


Subject(s)
COVID-19/mortality , Models, Statistical , Prognosis , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Female , Humans , Male , Middle Aged , Risk Assessment/methods , SARS-CoV-2 , United Kingdom/epidemiology
7.
BMC Med ; 19(1): 23, 2021 01 21.
Article in English | MEDLINE | ID: covidwho-1067228

ABSTRACT

BACKGROUND: The National Early Warning Score (NEWS2) is currently recommended in the UK for the risk stratification of COVID-19 patients, but little is known about its ability to detect severe cases. We aimed to evaluate NEWS2 for the prediction of severe COVID-19 outcome and identify and validate a set of blood and physiological parameters routinely collected at hospital admission to improve upon the use of NEWS2 alone for medium-term risk stratification. METHODS: Training cohorts comprised 1276 patients admitted to King's College Hospital National Health Service (NHS) Foundation Trust with COVID-19 disease from 1 March to 30 April 2020. External validation cohorts included 6237 patients from five UK NHS Trusts (Guy's and St Thomas' Hospitals, University Hospitals Southampton, University Hospitals Bristol and Weston NHS Foundation Trust, University College London Hospitals, University Hospitals Birmingham), one hospital in Norway (Oslo University Hospital), and two hospitals in Wuhan, China (Wuhan Sixth Hospital and Taikang Tongji Hospital). The outcome was severe COVID-19 disease (transfer to intensive care unit (ICU) or death) at 14 days after hospital admission. Age, physiological measures, blood biomarkers, sex, ethnicity, and comorbidities (hypertension, diabetes, cardiovascular, respiratory and kidney diseases) measured at hospital admission were considered in the models. RESULTS: A baseline model of 'NEWS2 + age' had poor-to-moderate discrimination for severe COVID-19 infection at 14 days (area under receiver operating characteristic curve (AUC) in training cohort = 0.700, 95% confidence interval (CI) 0.680, 0.722; Brier score = 0.192, 95% CI 0.186, 0.197). A supplemented model adding eight routinely collected blood and physiological parameters (supplemental oxygen flow rate, urea, age, oxygen saturation, C-reactive protein, estimated glomerular filtration rate, neutrophil count, neutrophil/lymphocyte ratio) improved discrimination (AUC = 0.735; 95% CI 0.715, 0.757), and these improvements were replicated across seven UK and non-UK sites. However, there was evidence of miscalibration with the model tending to underestimate risks in most sites. CONCLUSIONS: NEWS2 score had poor-to-moderate discrimination for medium-term COVID-19 outcome which raises questions about its use as a screening tool at hospital admission. Risk stratification was improved by including readily available blood and physiological parameters measured at hospital admission, but there was evidence of miscalibration in external sites. This highlights the need for a better understanding of the use of early warning scores for COVID.


Subject(s)
COVID-19/diagnosis , Early Warning Score , Aged , COVID-19/epidemiology , COVID-19/virology , Cohort Studies , Electronic Health Records , Female , Humans , Male , Middle Aged , Pandemics , Prognosis , SARS-CoV-2/isolation & purification , State Medicine , United Kingdom/epidemiology
8.
Curr Res Transl Med ; 69(2): 103276, 2021 05.
Article in English | MEDLINE | ID: covidwho-1062581

ABSTRACT

BACKGROUND: Understanding the spectrum and course of biological responses to coronavirus disease 2019 (COVID-19) may have important therapeutic implications. We sought to characterise biological responses among patients hospitalised with severe COVID-19 based on serial, routinely collected, physiological and blood biomarker values. METHODS AND FINDINGS: We performed a retrospective cohort study of 1335 patients hospitalised with laboratory-confirmed COVID-19 (median age 70 years, 56 % male), between 1st March and 30th April 2020. Latent profile analysis was performed on serial physiological and blood biomarkers. Patient characteristics, comorbidities and rates of death and admission to intensive care, were compared between the latent classes. A five class solution provided the best fit. Class 1 "Typical response" exhibited a moderately elevated and rising C-reactive protein (CRP), stable lymphopaenia, and the lowest rates of 14-day adverse outcomes. Class 2 "Rapid hyperinflammatory response" comprised older patients, with higher admission white cell and neutrophil counts, which declined over time, accompanied by a very high and rising CRP and platelet count, and exibited the highest mortality risk. Class 3 "Progressive inflammatory response" was similar to the typical response except for a higher and rising CRP, though similar mortality rate. Class 4 "Inflammatory response with kidney injury" had prominent lymphopaenia, moderately elevated (and rising) CRP, and severe renal failure. Class 5 "Hyperinflammatory response with kidney injury" comprised older patients, with a very high and rising CRP, and severe renal failure that attenuated over time. Physiological measures did not substantially vary between classes at baseline or early admission. CONCLUSIONS AND RELEVANCE: Our identification of five distinct classes of biomarker profiles provides empirical evidence for heterogeneous biological responses to COVID-19. Early hyperinflammatory responses and kidney injury may signify unique pathophysiology that requires targeted therapy.


Subject(s)
Biomarkers/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/physiopathology , Aged , Aged, 80 and over , Biological Variation, Individual , Body Temperature , COVID-19/blood , Cohort Studies , Comorbidity , Diagnostic Tests, Routine , Disease Progression , Female , Heart Rate/physiology , Humans , Male , Middle Aged , Oxygen Consumption/physiology , Prognosis , Retrospective Studies , Risk Assessment , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severity of Illness Index , Socioeconomic Factors , United Kingdom/epidemiology
9.
J Am Med Inform Assoc ; 28(4): 791-800, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-970031

ABSTRACT

OBJECTIVE: Risk prediction models are widely used to inform evidence-based clinical decision making. However, few models developed from single cohorts can perform consistently well at population level where diverse prognoses exist (such as the SARS-CoV-2 [severe acute respiratory syndrome coronavirus 2] pandemic). This study aims at tackling this challenge by synergizing prediction models from the literature using ensemble learning. MATERIALS AND METHODS: In this study, we selected and reimplemented 7 prediction models for COVID-19 (coronavirus disease 2019) that were derived from diverse cohorts and used different implementation techniques. A novel ensemble learning framework was proposed to synergize them for realizing personalized predictions for individual patients. Four diverse international cohorts (2 from the United Kingdom and 2 from China; N = 5394) were used to validate all 8 models on discrimination, calibration, and clinical usefulness. RESULTS: Results showed that individual prediction models could perform well on some cohorts while poorly on others. Conversely, the ensemble model achieved the best performances consistently on all metrics quantifying discrimination, calibration, and clinical usefulness. Performance disparities were observed in cohorts from the 2 countries: all models achieved better performances on the China cohorts. DISCUSSION: When individual models were learned from complementary cohorts, the synergized model had the potential to achieve better performances than any individual model. Results indicate that blood parameters and physiological measurements might have better predictive powers when collected early, which remains to be confirmed by further studies. CONCLUSIONS: Combining a diverse set of individual prediction models, the ensemble method can synergize a robust and well-performing model by choosing the most competent ones for individual patients.


Subject(s)
COVID-19/mortality , Models, Statistical , Prognosis , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Female , Humans , Male , Middle Aged , Risk Assessment/methods , SARS-CoV-2 , United Kingdom/epidemiology
10.
EClinicalMedicine ; 28: 100574, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-846813

ABSTRACT

BACKGROUND: People of minority ethnic backgrounds may be disproportionately affected by severe COVID-19. Whether this relates to increased infection risk, more severe disease progression, or worse in-hospital survival is unknown. The contribution of comorbidities or socioeconomic deprivation to ethnic patterning of outcomes is also unclear. METHODS: We conducted a case-control and a cohort study in an inner city primary and secondary care setting to examine whether ethnic background affects the risk of hospital admission with severe COVID-19 and/or in-hospital mortality. Inner city adult residents admitted to hospital with confirmed COVID-19 (n = 872 cases) were compared with 3,488 matched controls randomly sampled from a primary healthcare database comprising 344,083 people residing in the same region. For the cohort study, we studied 1827 adults consecutively admitted with COVID-19. The primary exposure variable was self-defined ethnicity. Analyses were adjusted for socio-demographic and clinical variables. FINDINGS: The 872 cases comprised 48.1% Black, 33.7% White, 12.6% Mixed/Other and 5.6% Asian patients. In conditional logistic regression analyses, Black and Mixed/Other ethnicity were associated with higher admission risk than white (OR 3.12 [95% CI 2.63-3.71] and 2.97 [2.30-3.85] respectively). Adjustment for comorbidities and deprivation modestly attenuated the association (OR 2.24 [1.83-2.74] for Black, 2.70 [2.03-3.59] for Mixed/Other). Asian ethnicity was not associated with higher admission risk (adjusted OR 1.01 [0.70-1.46]). In the cohort study of 1827 patients, 455 (28.9%) died over a median (IQR) of 8 (4-16) days. Age and male sex, but not Black (adjusted HR 1.06 [0.82-1.37]) or Mixed/Other ethnicity (adjusted HR 0.72 [0.47-1.10]), were associated with in-hospital mortality. Asian ethnicity was associated with higher in-hospital mortality but with a large confidence interval (adjusted HR 1.71 [1.15-2.56]). INTERPRETATION: Black and Mixed ethnicity are independently associated with greater admission risk with COVID-19 and may be risk factors for development of severe disease, but do not affect in-hospital mortality risk. Comorbidities and socioeconomic factors only partly account for this and additional ethnicity-related factors may play a large role. The impact of COVID-19 may be different in Asians. FUNDING: British Heart Foundation; the National Institute for Health Research; Health Data Research UK.

11.
Eur J Heart Fail ; 22(6): 967-974, 2020 06.
Article in English | MEDLINE | ID: covidwho-702780

ABSTRACT

AIMS: The SARS-CoV-2 virus binds to the angiotensin-converting enzyme 2 (ACE2) receptor for cell entry. It has been suggested that angiotensin-converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (ARB), which are commonly used in patients with hypertension or diabetes and may raise tissue ACE2 levels, could increase the risk of severe COVID-19 infection. METHODS AND RESULTS: We evaluated this hypothesis in a consecutive cohort of 1200 acute inpatients with COVID-19 at two hospitals with a multi-ethnic catchment population in London (UK). The mean age was 68 ± 17 years (57% male) and 74% of patients had at least one comorbidity. Overall, 415 patients (34.6%) reached the primary endpoint of death or transfer to a critical care unit for organ support within 21 days of symptom onset. A total of 399 patients (33.3%) were taking ACEi or ARB. Patients on ACEi/ARB were significantly older and had more comorbidities. The odds ratio for the primary endpoint in patients on ACEi and ARB, after adjustment for age, sex and co-morbidities, was 0.63 (95% confidence interval 0.47-0.84, P < 0.01). CONCLUSIONS: There was no evidence for increased severity of COVID-19 in hospitalised patients on chronic treatment with ACEi or ARB. A trend towards a beneficial effect of ACEi/ARB requires further evaluation in larger meta-analyses and randomised clinical trials.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , Betacoronavirus , Coronavirus Infections/epidemiology , Heart Failure/drug therapy , Pneumonia, Viral/epidemiology , Aged , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19 , Comorbidity , Coronavirus Infections/drug therapy , Disease Progression , Female , Follow-Up Studies , Heart Failure/epidemiology , Humans , Male , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Severity of Illness Index , Treatment Outcome , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL