Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Front Digit Health ; 5: 1074961, 2023.
Article in English | MEDLINE | ID: covidwho-2265918


Introduction: Drug utilization is currently assessed through traditional data sources such as big electronic medical records (EMRs) databases, surveys, and medication sales. Social media and internet data have been reported to provide more accessible and more timely access to medications' utilization. Objective: This review aims at providing evidence comparing web data on drug utilization to other sources before the COVID-19 pandemic. Methods: We searched Medline, EMBASE, Web of Science, and Scopus until November 25th, 2019, using a predefined search strategy. Two independent reviewers conducted screening and data extraction. Results: Of 6,563 (64%) deduplicated publications retrieved, 14 (0.2%) were included. All studies showed positive associations between drug utilization information from web and comparison data using very different methods. A total of nine (64%) studies found positive linear correlations in drug utilization between web and comparison data. Five studies reported association using other methods: One study reported similar drug popularity rankings using both data sources. Two studies developed prediction models for future drug consumption, including both web and comparison data, and two studies conducted ecological analyses but did not quantitatively compare data sources. According to the STROBE, RECORD, and RECORD-PE checklists, overall reporting quality was mediocre. Many items were left blank as they were out of scope for the type of study investigated. Conclusion: Our results demonstrate the potential of web data for assessing drug utilization, although the field is still in a nascent period of investigation. Ultimately, social media and internet search data could be used to get a quick preliminary quantification of drug use in real time. Additional studies on the topic should use more standardized methodologies on different sets of drugs in order to confirm these findings. In addition, currently available checklists for study quality of reporting would need to be adapted to these new sources of scientific information.

J Am Med Inform Assoc ; 27(11): 1721-1726, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-1024117


Global pandemics call for large and diverse healthcare data to study various risk factors, treatment options, and disease progression patterns. Despite the enormous efforts of many large data consortium initiatives, scientific community still lacks a secure and privacy-preserving infrastructure to support auditable data sharing and facilitate automated and legally compliant federated analysis on an international scale. Existing health informatics systems do not incorporate the latest progress in modern security and federated machine learning algorithms, which are poised to offer solutions. An international group of passionate researchers came together with a joint mission to solve the problem with our finest models and tools. The SCOR Consortium has developed a ready-to-deploy secure infrastructure using world-class privacy and security technologies to reconcile the privacy/utility conflicts. We hope our effort will make a change and accelerate research in future pandemics with broad and diverse samples on an international scale.

Biomedical Research , Computer Security , Coronavirus Infections , Information Dissemination , Pandemics , Pneumonia, Viral , Privacy , COVID-19 , Humans , Information Dissemination/ethics , Internationality , Machine Learning