ABSTRACT
Disease transmission is notoriously heterogeneous, and SARS-CoV-2 is no exception. A skewed distribution where few individuals or events are responsible for the majority of transmission can result in explosive, superspreading events, which produce rapid and volatile epidemic dynamics, especially early or late in epidemics. Anticipating and preventing superspreading events can produce large reductions in overall transmission rates. Here, we present a compartmental (SEIR) epidemiological model framework for estimating transmission parameters from multiple imperfectly observed data streams, including reported cases, deaths, and mobile phone-based mobility that incorporates individual-level heterogeneity in transmission using previous estimates for SARS-CoV-1 and SARS-CoV-2. We parameterize the model for COVID-19 epidemic dynamics by estimating a time-varying transmission rate that incorporates the impact of non-pharmaceutical intervention strategies that change over time, in five epidemiologically distinct settings---Los Angeles and Santa Clara Counties, California;Seattle (King County), Washington;Atlanta (Dekalb and Fulton Counties), Georgia;and Miami (Miami-Dade County), Florida. We find the effective reproduction number R E dropped below 1 rapidly following social distancing orders in mid-March, 2020 and remained there into June in Santa Clara County and Seattle, but climbed above 1 in late May in Los Angeles, Miami, and Atlanta, and has trended upward in all locations since April. With the fitted model, we ask: how does truncating the tail of the individual-level transmission rate distribution affect epidemic dynamics and control? We find interventions that truncate the transmission rate distribution while partially relaxing social distancing are broadly effective, with impacts on epidemic growth on par with the strongest population-wide social distancing observed in April, 2020. Given that social distancing interventions will be needed to maintain epidemic control until a vaccine becomes widely available, "chopping off the tail" to reduce the probability of superspreading events presents a promising option to alleviate the need for extreme general social distancing.
ABSTRACT
Mathematical models of epidemics are important tools for predicting epidemic dynamics and evaluating interventions. Yet, because early models are built on limited information, it is unclear how long they will accurately capture epidemic dynamics. Using a stochastic SEIR model of COVID-19 fitted to reported deaths, we estimated transmission parameters at different time points during the first wave of the epidemic (March-June, 2020) in Santa Clara County, California. Although our estimated basic reproduction number ([Formula: see text]) remained stable from early April to late June (with an overall median of 3.76), our estimated effective reproduction number ([Formula: see text]) varied from 0.18 to 1.02 in April before stabilizing at 0.64 on 27 May. Between 22 April and 27 May, our model accurately predicted dynamics through June; however, the model did not predict rising summer cases after shelter-in-place orders were relaxed in June, which, in early July, was reflected in cases but not yet in deaths. While models are critical for informing intervention policy early in an epidemic, their performance will be limited as epidemic dynamics evolve. This paper is one of the first to evaluate the accuracy of an early epidemiological compartment model over time to understand the value and limitations of models during unfolding epidemics.
Subject(s)
COVID-19 , Epidemics , Basic Reproduction Number , Humans , Models, Theoretical , SARS-CoV-2ABSTRACT
Public parks serve an important societal function as recreational spaces for diverse communities of people, with well documented physical and mental health benefits. As such, parks may be crucial for how people have handled effects of the COVID-19 pandemic, particularly the increasingly limited recreational opportunities, widespread financial uncertainty, and consequent heightened anxiety. Despite the documented benefits of parks, however, many states have instituted park shutdown orders due to fears that public parks could facilitate SARS-CoV-2 transmission. Here we use geotagged social media data from state, county, and local parks throughout New Jersey to examine whether park visitation increased when the COVID-19 pandemic began and whether park shutdown orders were effective at deterring park usage. We compare park usage during four discrete stages of spring 2020: (1) before the pandemic began, (2) during the beginning of the pandemic, (3) during the New Jersey governor's state-wide park shutdown order, and (4) following the lifting of the shutdown. We find that park visitation increased by 63.4% with the onset of the pandemic. The subsequent park shutdown order caused visitation in closed parks to decline by 76.1% while parks that remained open continued to experience elevated visitation levels. Visitation then returned to elevated pre-shutdown levels when closed parks were allowed to reopen. Altogether, our results indicate that parks continue to provide crucial services to society, particularly in stressful times when opportunities for recreation are limited. Furthermore, our results suggest that policies targeting human behavior can be effective and are largely reversible. As such, we should continue to invest in public parks and to explore the role of parks in managing public health and psychological well-being.
Subject(s)
COVID-19/epidemiology , COVID-19/psychology , Parks, Recreational/statistics & numerical data , Public Facilities/statistics & numerical data , Exercise , Humans , New Jersey/epidemiology , Pandemics , Physical Distancing , Quarantine/psychology , Recreation/psychology , SARS-CoV-2/isolation & purification , Social MediaABSTRACT
The current COVID-19 pandemic has resulted in the unprecedented development and integration of infectious disease dynamic transmission models into policy making and public health practice. Models offer a systematic way to investigate transmission dynamics and produce short-term and long-term predictions that explicitly integrate assumptions about biological, behavioural, and epidemiological processes that affect disease transmission, burden, and surveillance. Models have been valuable tools during the COVID-19 pandemic and other infectious disease outbreaks, able to generate possible trajectories of disease burden, evaluate the effectiveness of intervention strategies, and estimate key transmission variables. Particularly given the rapid pace of model development, evaluation, and integration with decision making in emergency situations, it is necessary to understand the benefits and pitfalls of transmission models. We review and highlight key aspects of the history of infectious disease dynamic models, the role of rigorous testing and evaluation, the integration with data, and the successful application of models to guide public health. Rather than being an expansive history of infectious disease models, this Review focuses on how the integration of modelling can continue to be advanced through policy and practice in appropriate and conscientious ways to support the current pandemic response.
Subject(s)
COVID-19/epidemiology , Disease Outbreaks/prevention & control , Disease Transmission, Infectious/prevention & control , Models, Theoretical , Disease Outbreaks/history , Disease Transmission, Infectious/history , Health Policy , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Humans , Public HealthABSTRACT
Disease transmission is notoriously heterogeneous, and SARS-CoV-2 is no exception. A skewed distribution where few individuals or events are responsible for the majority of transmission can result in explosive, superspreading events, which produce rapid and volatile epidemic dynamics, especially early or late in epidemics. Anticipating and preventing superspreading events can produce large reductions in overall transmission rates. Here, we present a stochastic compartmental (SEIR) epidemiological model framework for estimating transmission parameters from multiple imperfectly observed data streams, including reported cases, deaths, and mobile phone-based mobility that incorporates individual-level heterogeneity in transmission using previous estimates for SARS-CoV-1 and SARS-CoV-2. We parameterize the model for COVID-19 epidemic dynamics by estimating a time-varying transmission rate that incorporates the impact of non-pharmaceutical intervention strategies that change over time, in five epidemiologically distinct settings-Los Angeles and Santa Clara Counties, California; Seattle (King County), Washington; Atlanta (Dekalb and Fulton Counties), Georgia; and Miami (Miami-Dade County), Florida. We find that the effective reproduction number (RE) dropped below 1 rapidly in all five locations following social distancing orders in mid-March, 2020, but that gradually increasing mobility starting around mid-April led to an RE once again above 1 in late May (Los Angeles, Miami, and Atlanta) or early June (Santa Clara County and Seattle). However, we find that increased social distancing starting in mid-July in response to epidemic resurgence once again dropped RE below 1 in all locations by August 14. We next used the fitted model to ask: how does truncating the individual-level transmission rate distribution (which removes periods of time with especially high individual transmission rates and thus models superspreading events) affect epidemic dynamics and control? We find that interventions that truncate the transmission rate distribution while partially relaxing social distancing are broadly effective, with impacts on epidemic growth on par with the strongest population-wide social distancing observed in April, 2020. Given that social distancing interventions will be needed to maintain epidemic control until a vaccine becomes widely available, "chopping off the tail" to reduce the probability of superspreading events presents a promising option to alleviate the need for extreme general social distancing.
Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Epidemics/prevention & control , Models, Theoretical , Physical Distancing , Basic Reproduction Number , California , Florida , Georgia , Humans , WashingtonABSTRACT
Disease transmission is notoriously heterogeneous, and SARS-CoV-2 is no exception. A skewed distribution where few individuals or events are responsible for the majority of transmission can result in explosive, superspreading events, which produce rapid and volatile epidemic dynamics, especially early or late in epidemics. Anticipating and preventing superspreading events can produce large reductions in overall transmission rates. Here, we present a compartmental (SEIR) epidemiological model framework for estimating transmission parameters from multiple imperfectly observed data streams, including reported cases, deaths, and mobile phone-based mobility that incorporates individual-level heterogeneity in transmission using previous estimates for SARS-CoV-1 and SARS-CoV-2. We parameterize the model for COVID-19 epidemic dynamics by estimating a time-varying transmission rate that incorporates the impact of non-pharmaceutical intervention strategies that change over time, in five epidemiologically distinct settings---Los Angeles and Santa Clara Counties, California; Seattle (King County), Washington; Atlanta (Dekalb and Fulton Counties), Georgia; and Miami (Miami-Dade County), Florida. We find the effective reproduction number R E dropped below 1 rapidly following social distancing orders in mid-March, 2020 and remained there into June in Santa Clara County and Seattle, but climbed above 1 in late May in Los Angeles, Miami, and Atlanta, and has trended upward in all locations since April. With the fitted model, we ask: how does truncating the tail of the individual-level transmission rate distribution affect epidemic dynamics and control? We find interventions that truncate the transmission rate distribution while partially relaxing social distancing are broadly effective, with impacts on epidemic growth on par with the strongest population-wide social distancing observed in April, 2020. Given that social distancing interventions will be needed to maintain epidemic control until a vaccine becomes widely available, "chopping off the tail" to reduce the probability of superspreading events presents a promising option to alleviate the need for extreme general social distancing.
ABSTRACT
As of 24 April 2020, the SARS-CoV-2 epidemic has resulted in over 830,000 confirmed infections in the United States1. The incidence of COVID-19, the disease associated with this new coronavirus, continues to rise. The epidemic threatens to overwhelm healthcare systems, and identifying those regions where the disease burden is likely to be high relative to the rest of the country is critical for enabling prudent and effective distribution of emergency medical care and public health resources. Globally, the risk of severe outcomes associated with COVID-19 has consistently been observed to increase with age2,3. We used age-specific mortality patterns in tandem with demographic data to map projections of the cumulative case burden of COVID-19 and the subsequent burden on healthcare resources. The analysis was performed at the county level across the United States, assuming a scenario in which 20% of the population of each county acquires infection. We identified counties that will probably be consistently, heavily affected relative to the rest of the country across a range of assumptions about transmission patterns, such as the basic reproductive rate, contact patterns and the efficacy of quarantine. We observed a general pattern that per capita disease burden and relative healthcare system demand may be highest away from major population centers. These findings highlight the importance of ensuring equitable and adequate allocation of medical care and public health resources to communities outside of major urban areas.