Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296942

ABSTRACT

Knowledge of the factors contributing to the development of protective immunity after vaccination with COVID-19 mRNA vaccines is fragmentary. Thus we employed high-temporal-resolution transcriptome profiling and in-depth characterization of antibody production approaches to investigate responses to COVID-19 mRNA vaccination. There were marked differences in the timing and amplitude of the responses to the priming and booster doses. Notably, two distinct interferon signatures were identified, that differed based on their temporal patterns of induction. The first signature (S1), which was preferentially induced by type I interferon, peaked at day 2 post-prime and at day 1 post-boost, and in both instances was associated with subsequent development of the antibody response. In contrast, the second interferon signature (S2) peaked at day 1 both post-prime and post-boost but was found to be potently induced only post-boost, where it coincided with a robust inflammation peak. Notably, we also observed post-prime-like (S1++,S20/+) and post-boost-like (S1++,S2++) patterns of interferon response among COVID-19 patients. A post-boost-like signature was observed in most severely ill patients at admission to the intensive care unit and was associated with a shorter hospital stay. Interestingly, severely ill patients who stayed hospitalized the longest showed a peculiar pattern of interferon induction (S1-/0,S2+), that we did not observe following the administration of mRNA vaccines. In summary, high temporal resolution profiling revealed an elaborate array of immune responses elicited by priming and booster doses of COVID-19 mRNA vaccines. Furthermore, it contributed to the identification of distinct interferon-response phenotypes underpinning vaccine immunogenicity and the course of COVID-19 disease.

2.
Nano Today ; 38: 101136, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1142162

ABSTRACT

Two-dimensional transition metal carbides/carbonitrides known as MXenes are rapidly growing as multimodal nanoplatforms in biomedicine. Here, taking SARS-CoV-2 as a model, we explored the antiviral properties and immune-profile of a large panel of four highly stable and well-characterized MXenes - Ti3C2Tx, Ta4C3T x , Mo2Ti2C3T x and Nb4C3T x . To start with antiviral assessment, we first selected and deeply analyzed four different SARS-CoV-2 genotypes, common in most countries and carrying the wild type or mutated spike protein. When inhibition of the viral infection was tested in vitro with four viral clades, Ti3C2T x in particular, was able to significantly reduce infection only in SARS-CoV-2/clade GR infected Vero E6 cells. This difference in the antiviral activity, among the four viral particles tested, highlights the importance of considering the viral genotypes and mutations while testing antiviral activity of potential drugs and nanomaterials. Among the other MXenes tested, Mo2Ti2C3T x also showed antiviral properties. Proteomic, functional annotation analysis and comparison to the already published SARS-CoV-2 protein interaction map revealed that MXene-treatment exerts specific inhibitory mechanisms. Envisaging future antiviral MXene-based drug nano-formulations and considering the central importance of the immune response to viral infections, the immune impact of MXenes was evaluated on human primary immune cells by flow cytometry and single-cell mass cytometry on 17 distinct immune subpopulations. Moreover, 40 secreted cytokines were analyzed by Luminex technology. MXene immune profiling revealed i) the excellent bio and immune compatibility of the material, as well as the ability of MXene ii) to inhibit monocytes and iii) to reduce the release of pro-inflammatory cytokines, suggesting an anti-inflammatory effect elicited by MXene. We here report a selection of MXenes and viral SARS-CoV-2 genotypes/mutations, a series of the computational, structural and molecular data depicting deeply the SARS-CoV-2 mechanism of inhibition, as well as high dimensional single-cell immune-MXene profiling. Taken together, our results provide a compendium of knowledge for new developments of MXene-based multi-functioning nanosystems as antivirals and immune-modulators.

3.
BMJ Open ; 11(1): e044497, 2021 01 06.
Article in English | MEDLINE | ID: covidwho-1013055

ABSTRACT

INTRODUCTION: Accurate triage is an important first step to effectively manage the clinical treatment of severe cases in a pandemic outbreak. In the current COVID-19 global pandemic, there is a lack of reliable clinical tools to assist clinicians to perform accurate triage. Host response biomarkers have recently shown promise in risk stratification of disease progression; however, the role of these biomarkers in predicting disease progression in patients with COVID-19 is unknown. Here, we present a protocol outlining a prospective validation study to evaluate the biomarkers' performance in predicting clinical outcomes of patients with COVID-19. METHODS AND ANALYSIS: This prospective validation study assesses patients infected with COVID-19, in whom blood samples are prospectively collected. Recruited patients include a range of infection severity from asymptomatic to critically ill patients, recruited from the community, outpatient clinics, emergency departments and hospitals. Study samples consist of peripheral blood samples collected into RNA-preserving (PAXgene/Tempus) tubes on patient presentation or immediately on study enrolment. Real-time PCR (RT-PCR) will be performed on total RNA extracted from collected blood samples using primers specific to host response gene expression biomarkers that have been previously identified in studies of respiratory viral infections. The RT-PCR data will be analysed to assess the diagnostic performance of individual biomarkers in predicting COVID-19-related outcomes, such as viral pneumonia, acute respiratory distress syndrome or bacterial pneumonia. Biomarker performance will be evaluated using sensitivity, specificity, positive and negative predictive values, likelihood ratios and area under the receiver operating characteristic curve. ETHICS AND DISSEMINATION: This research protocol aims to study the host response gene expression biomarkers in severe respiratory viral infections with a pandemic potential (COVID-19). It has been approved by the local ethics committee with approval number 2020/ETH00886. The results of this project will be disseminated in international peer-reviewed scientific journals.


Subject(s)
Biomarkers/metabolism , COVID-19/metabolism , Critical Illness/epidemiology , Emergency Service, Hospital/statistics & numerical data , Pandemics , SARS-CoV-2 , Triage/methods , Adult , COVID-19/epidemiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Time Factors
4.
J Transl Med ; 18(1): 291, 2020 07 31.
Article in English | MEDLINE | ID: covidwho-691020

ABSTRACT

BACKGROUND: Covid-19 morbidity and mortality are associated with a dysregulated immune response. Tools are needed to enhance existing immune profiling capabilities in affected patients. Here we aimed to develop an approach to support the design of targeted blood transcriptome panels for profiling the immune response to SARS-CoV-2 infection. METHODS: We designed a pool of candidates based on a pre-existing and well-characterized repertoire of blood transcriptional modules. Available Covid-19 blood transcriptome data was also used to guide this process. Further selection steps relied on expert curation. Additionally, we developed several custom web applications to support the evaluation of candidates. RESULTS: As a proof of principle, we designed three targeted blood transcript panels, each with a different translational connotation: immunological relevance, therapeutic development relevance and SARS biology relevance. CONCLUSION: Altogether the work presented here may contribute to the future expansion of immune profiling capabilities via targeted profiling of blood transcript abundance in Covid-19 patients.


Subject(s)
Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Transcriptome , Adult , Antibodies, Viral/blood , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Gene Expression Profiling , Humans , Immune System , Internet , Pandemics , Pneumonia, Viral/immunology , RNA-Seq , SARS-CoV-2 , Software
5.
ACS Nano ; 14(6): 6383-6406, 2020 06 23.
Article in English | MEDLINE | ID: covidwho-595172

ABSTRACT

The COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics. Considering what we know so far about the life cycle of the virus, we envision key steps where nanotechnology could counter the disease. First, nanoparticles (NPs) can offer alternative methods to classical disinfection protocols used in healthcare settings, thanks to their intrinsic antipathogenic properties and/or their ability to inactivate viruses, bacteria, fungi, or yeasts either photothermally or via photocatalysis-induced reactive oxygen species (ROS) generation. Nanotechnology tools to inactivate SARS-CoV-2 in patients could also be explored. In this case, nanomaterials could be used to deliver drugs to the pulmonary system to inhibit interaction between angiotensin-converting enzyme 2 (ACE2) receptors and viral S protein. Moreover, the concept of "nanoimmunity by design" can help us to design materials for immune modulation, either stimulating or suppressing the immune response, which would find applications in the context of vaccine development for SARS-CoV-2 or in counteracting the cytokine storm, respectively. In addition to disease prevention and therapeutic potential, nanotechnology has important roles in diagnostics, with potential to support the development of simple, fast, and cost-effective nanotechnology-based assays to monitor the presence of SARS-CoV-2 and related biomarkers. In summary, nanotechnology is critical in counteracting COVID-19 and will be vital when preparing for future pandemics.


Subject(s)
Betacoronavirus , Coronavirus Infections , Nanotechnology/methods , Pandemics , Pneumonia, Viral , Betacoronavirus/genetics , Betacoronavirus/immunology , Biomimetics , COVID-19 , COVID-19 Vaccines , Computer Simulation , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Disinfection , Drug Delivery Systems , Environmental Microbiology , Humans , Immunomodulation , Masks , Nanomedicine , Nanotechnology/trends , Pandemics/prevention & control , Personal Protective Equipment , Photochemotherapy , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , SARS-CoV-2 , Viral Vaccines/genetics , Viral Vaccines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL