Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Fluids ; 8(4):111, 2023.
Article in English | ProQuest Central | ID: covidwho-2297501


Existing indoor closed ultraviolet-C (UVC) air purifiers (UVC in a box) have faced technological challenges during the COVID-19 breakout, owing to demands of low energy consumption, high flow rates, and high kill rates at the same time. A new conceptual design of a novel UVC-LED (light-emitting diode) air purifier for a low-cost solution to mitigate airborne diseases is proposed. The concept focuses on performance and robustness. It contains a dust-filter assembly, an innovative UVC chamber, and a fan. The low-cost dust filter aims to suppress dust accumulation in the UVC chamber to ensure durability and is conceptually shown to be easily replaced while mitigating any possible contamination. The chamber includes novel turbulence-generating grids and a novel LED arrangement. The turbulent generator promotes air mixing, while the LEDs inactivate the pathogens at a high flow rate and sufficient kill rate. The conceptual design is portable and can fit into ventilation ducts. Computational fluid dynamics and UVC ray methods were used for analysis. The design produces a kill rate above 97% for COVID and tuberculosis and above 92% for influenza A at a flow rate of 100 L/s and power consumption of less than 300 W. An analysis of the dust-filter performance yields the irradiation and flow fields.

PeerJ ; 9: e11024, 2021.
Article in English | MEDLINE | ID: covidwho-1115528


There is increasing evidence that the 2020 COVID-19 pandemic has been influenced by variations in air temperature and humidity. However, the impact that these environmental parameters have on survival of the SARS-CoV-2 virus has not been fully characterised. Therefore, an analytical study was undertaken using published data to develop a psychrometric model to assess the biological decay rate of the virus in aerosols. This revealed that it is possible to describe with reasonable accuracy (R 2 = 0.718, p < 0.001) the biological decay constant for the SARS-CoV-2 virus using a regression model with enthalpy, vapour pressure and specific volume as predictors. Applying this to historical meteorological data from London, Paris and Milan over the pandemic period, produced results which indicate that the average half-life of the virus in aerosols outdoors was in the region 13-22 times longer in March 2020, when the outbreak was accelerating, than it was in August 2020 when epidemic in Europe was at its nadir. However, indoors, this variation is likely to be much less. As such, this suggests that changes in virus survivability due the variations in the psychrometric qualities of the air might influence the transmission of SARS-CoV-2.

PeerJ ; 8: e10196, 2020.
Article in English | MEDLINE | ID: covidwho-864217


As the world's economies come out of the lockdown imposed by the COVID-19 pandemic, there is an urgent need for technologies to mitigate COVID-19 transmission in confined spaces such as buildings. This feasibility study looks at one such technology, upper-room ultraviolet (UV) air disinfection, that can be safely used while humans are present in the room space, and which has already proven its efficacy as an intervention to inhibit the transmission of airborne diseases such as measles and tuberculosis. Using published data from various sources, it is shown that the SARS-CoV-2 virus, the causative agent of COVID-19, is highly likely to be susceptible to UV-C damage when suspended in air, with a UV susceptibility constant likely to be in the region 0.377-0.590 m2/J, similar to that for other aerosolised coronaviruses. As such, the UV-C flux required to disinfect the virus is expected to be acceptable and safe for upper-room applications. Through analysis of expected and worst-case scenarios, the efficacy of the upper-room UV-C approach for reducing COVID-19 transmission in confined spaces (with moderate but sufficient ceiling height) is demonstrated. Furthermore, it is shown that with SARS-CoV-2, it should be possible to achieve high equivalent air change rates using upper-room UV air disinfection, suggesting that the technology might be particularly applicable to poorly ventilated spaces.