Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-332623

ABSTRACT

Recombination is a crucial process in the evolution of many organisms. Although the evolutionary reasons behind its occurrence in RNA viruses are debated, this phenomenon has been associated with major epidemiological events such as virus host range expansion, antigenic shift or variation in virulence 1,2, and this process occurs frequently in positive strand RNA viruses such as coronaviruses. The SARS-CoV-2 pandemic has been associated with the repeated emergence of variants of concern presenting increased transmissibility, severity or immune escape 3. The recent extensive circulation of Delta worldwide and its subsequent replacement by viruses of the Omicron lineage 4 (BA.1 then BA.2), have created conditions for genetic exchanges between viruses with both genetic diversity and phenotypic specificities 5-7. Here we report the identification and in vitro and in vivo characterization of a Delta-Omicron recombinant in Europe. This recombinant exhibits immune escape properties similar to Omicron, while its behavior in mice expressing the human ACE2 receptor is more similar to Delta. This recombinant provides a unique and natural opportunity to better understand the genotype to phenotype links in SARS-CoV-2.

2.
J Clin Virol Plus ; 1(4): 100041, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1734699

ABSTRACT

Background: The systemic antibody responses to SARS-CoV-2 in COVID-19 patients has been extensively studied. However, less is known about the mucosal responses in the upper airways, the site of initial SARS-CoV-2 replication. Methods: The IgG and IgA antibody responses were analysed in plasma and nasopharyngeal swabs from the first four confirmed COVID-19 patients in France. Two were pauci-symptomatic while two developed severe disease. We characterized their antibody profiles by using an in-house ELISA to detect antibodies directed against SARS-CoV-2 Nucleoprotein and Spike. Results: Anti-N IgG and IgA antibodies were detected in the NPS of severe patients only. The levels of antibodies in the plasma markedly differed amongst the patients. The most distinctive features are a strong anti-N IgG response in the severe patient who recovered, and a high anti-N IgA response specifically detected in the fatal case of COVID-19. Conclusions: Anti-N IgG and IgA antibodies are detected in NPS only for severe patients, with levels related to serological antibodies. The severe patients showed different antibody profiles in the plasma, notably regarding the IgA and IgG response to the N antigen, that may reflect different disease outcome. By contrast, pauci-symptomatic patients did not exhibit any mucosal antibodies in NSP, which is associated with a low or absent serological response against both N and S.

3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-316224

ABSTRACT

COVID-19 has become a pandemic that has caused over 200,000 deaths worldwide, with no antiviral drug or vaccine yet available. Several clinical studies are ongoing to evaluate the efficacy of repurposed drugs that have demonstrated antiviral efficacy in vitro . Among these candidates, hydroxychloroquine (HCQ) has been given to thousands of individuals worldwide but definitive evidence for HCQ efficacy in treatment of COVID-19 is still missing.We evaluated the antiviral activity of HCQ both in vitro and in SARS-CoV-2-infected macaques. HCQ showed antiviral activity in monkey African green monkey kidney (VeroE6) cells but not in a model of reconstituted human airway epithelium. In macaques, we tested different treatment strategies in comparison to placebo, before and after peak viral load, alone or in combination with azithromycin (AZTH). Neither HCQ nor HCQ+AZTH showed a significant effect on the viral load levels in any of the tested compartments. When the drug was used as a pre-exposure prophylaxis (PrEP), HCQ did not confer protection against acquisition of infection.Our findings do not support the use of HCQ, either alone or in combination with AZTH, as an antiviral treatment for COVID-19 in humans.

4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311331

ABSTRACT

Non-human primates infected with SARS-CoV-2 exhibit mild clinical signs. Here we used a mathematical model to characterize in detail the viral dynamics in 31 cynomolgus macaques infected with 10 6 pfu of SARS-CoV-2 for which nasopharyngeal and tracheal viral load were frequently assessed. We identified that infected cells had a large daily viral production (>10 4 virus) and a within-host reproductive basic number of 6 and 4 in nasopharyngeal and tracheal compartment, respectively. After peak viral load, infected cells were rapidly cleared with a half-life of 9 hours, with no significant association between cytokine elevation and clearance. Translating our model to the context of human-to-human infection, human mild infection may be characterized by a peak occurring 4 days after infection, a viral shedding of ~11 days and a generation time of 4 days. These results improve the understanding of SARS-CoV-2 viral replication and better understand the infection to SARS-CoV-2 in humans.

5.
Euro Surveill ; 27(6)2022 Feb.
Article in English | MEDLINE | ID: covidwho-1686391

ABSTRACT

BackgroundThe COVID-19 pandemic has led to an unprecedented daily use of RT-PCR tests. These tests are interpreted qualitatively for diagnosis, and the relevance of the test result intensity, i.e. the number of quantification cycles (Cq), is debated because of strong potential biases.AimWe explored the possibility to use Cq values from SARS-CoV-2 screening tests to better understand the spread of an epidemic and to better understand the biology of the infection.MethodsWe used linear regression models to analyse a large database of 793,479 Cq values from tests performed on more than 2 million samples between 21 January and 30 November 2020, i.e. the first two pandemic waves. We performed time series analysis using autoregressive integrated moving average (ARIMA) models to estimate whether Cq data information improves short-term predictions of epidemiological dynamics.ResultsAlthough we found that the Cq values varied depending on the testing laboratory or the assay used, we detected strong significant trends associated with patient age, number of days after symptoms onset or the state of the epidemic (the temporal reproduction number) at the time of the test. Furthermore, knowing the quartiles of the Cq distribution greatly reduced the error in predicting the temporal reproduction number of the COVID-19 epidemic.ConclusionOur results suggest that Cq values of screening tests performed in the general population generate testable hypotheses and help improve short-term predictions for epidemic surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , France/epidemiology , Humans , Pandemics , Reverse Transcriptase Polymerase Chain Reaction
6.
EMBO Rep ; 23(2): e54341, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1575628

ABSTRACT

SARS-CoV-2 infection results in impaired interferon response in patients with severe COVID-19. However, how SARS-CoV-2 interferes with host immune responses is incompletely understood. Here, we sequence small RNAs from SARS-CoV-2-infected human cells and identify a microRNA (miRNA) derived from a recently evolved region of the viral genome. We show that the virus-derived miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer, which are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3'UTR of interferon-stimulated genes and represses their expression in a miRNA-like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID-19 patients. We propose that SARS-CoV-2 can potentially employ a virus-derived miRNA to hijack the host miRNA machinery, which could help to evade the interferon-mediated immune response.


Subject(s)
COVID-19 , MicroRNAs , RNA, Viral/genetics , SARS-CoV-2/genetics , 3' Untranslated Regions , COVID-19/immunology , Humans , Immunity , MicroRNAs/genetics
7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-291169

ABSTRACT

Background: Claims of influenza vaccination increasing COVID-19 risk are circulating. Within the I-MOVE-COVID-19 primary care multicentre study, we measured the association between 2019–20 influenza vaccination and COVID-19. Methods We conducted a multicentre test-negative case-control study at primary care level, in study sites in five European countries, from March–August 2020. Patients presenting with acute respiratory infection were swabbed, with demographic, 2019–20 influenza vaccination and clinical information documented. Using logistic regression we measured the adjusted odds ratio (aOR), adjusting for study site and age, sex, calendar time, presence of chronic conditions. The main analysis included patients swabbed ≤7 days after onset from the three countries with <15% of missing influenza vaccination. In secondary analyses, we included five countries, using multiple imputation with chained equations to account for missing data. Results We included 257 COVID-19 cases and 1631 controls in the main analysis (three countries). The overall aOR between influenza vaccination and COVID-19 was 0.93 (95% CI: 0.66–1.32). The aOR was 0.92 (95% CI: 0.58–1.46) and 0.92 (95%CI: 0.51–1.67) among those aged 20–59 and ≥60 years, respectively. In secondary analyses, we included 6457 cases and 69272 controls. The imputed aOR was 0.87 (95% CI: 0.79–0.95) among all ages and any delay between swab and symptom onset. Conclusions There was no evidence that COVID-19 cases were more likely to be vaccinated against influenza than controls. Influenza vaccination should be encouraged among target groups for vaccination. I-MOVE-COVID-19 will continue documenting influenza vaccination status in 2020-21, in order to learn about effects of recent influenza vaccination.

8.
Clin Microbiol Infect ; 28(2): 298.e9-298.e15, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1458608

ABSTRACT

OBJECTIVES: In early January 2021 an outbreak of nosocomial cases of coronavirus disease 2019 (COVID-19) emerged in Western France; RT-PCR tests were repeatedly negative on nasopharyngeal samples but positive on lower respiratory tract samples. Whole-genome sequencing (WGS) revealed a new variant, currently defining a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.616. In March, the WHO classified this as a 'variant under investigation' (VUI). We analysed the characteristics and outcomes of COVID-19 cases related to this new variant. METHODS: Clinical, virological, and radiological data were retrospectively collected from medical charts in the two hospitals involved. We enrolled those inpatients with: (a) positive SARS-CoV-2 RT-PCR on a respiratory sample, (b) seroconversion with anti-SARS-CoV-2 IgG/IgM, or (c) suggestive symptoms and typical features of COVID-19 on a chest CT scan. Cases were categorized as B.1.616, a variant of concern (VOC), or unknown. RESULTS: From 1st January to 24th March 2021, 114 patients fulfilled the inclusion criteria: B.1.616 (n = 39), VOC (n = 32), and unknown (n = 43). B.1.616-related cases were older than VOC-related cases (81 years, interquartile range (IQR) 73-88 versus 73 years, IQR 67-82, p < 0.05) and their first RT-PCR tests were rarely positive (6/39, 15% versus 31/32, 97%, p < 0.05). The B.1.616 variant was independently associated with severe disease (multivariable Cox model HR 4.0, 95%CI 1.5-10.9) and increased lethality (28-day mortality 18/39 (46%) for B.1.616 versus 5/32 (16%) for VOC, p = 0.006). CONCLUSION: We report a nosocomial outbreak of COVID-19 cases related to a new variant, B.1.616, which is poorly detected by RT-PCR on nasopharyngeal samples and is associated with high lethality.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , France/epidemiology , Humans , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction
9.
Nat Commun ; 12(1): 5769, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1447305

ABSTRACT

Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Δ, Y144Δ, and LLA241/243Δ. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/genetics , Africa, Central/epidemiology , Antibodies, Neutralizing/immunology , COVID-19/epidemiology , Europe/epidemiology , Humans , Immune Evasion/genetics , Mutation , Phylogeny , Phylogeography , SARS-CoV-2/classification , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Travel/statistics & numerical data
10.
Pediatr Pulmonol ; 56(12): 3669-3673, 2021 12.
Article in English | MEDLINE | ID: covidwho-1384290

ABSTRACT

INTRODUCTION: COVID-19 pandemic and associated lockdown measures have deeply modified the natural course of seasonal viral infections, such as respiratory syncytial virus (RSV). METHODS: We analyzed French national data from three networks: emergency departments (ED) of French hospitals, general practitioners (GP), and hospital laboratories. We compared the number of ED or GP visits for bronchiolitis in children <2 years of age, and the percentage of RSV positive tests in the 2020 to 2021 season with those of the two previous seasons (2018-2019 and 2019-2020). We used time series of the previous 5 years to calculate epidemic thresholds. RESULTS: During the 2020-2021 season, the epidemic begun in February (Week 05) in the Ile de France (Paris and suburbs) region, 12 weeks later compared with the previous seasons and progressively spread across all the French metropolitan regions. The highest number of bronchiolitis cases in 2021 (Week 12) occurred 10-12 weeks after the previous seasonal peaks of previous seasons, but the number of cases remained lower than in the previous seasonal peaks. CONCLUSION: We identified a delayed RSV epidemic in the period that usually corresponds at the end of the epidemic season, raising concerns for the burden of RSV in the already strained healthcare systems during the COVID-19 pandemic.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Communicable Disease Control , Disease Outbreaks , France/epidemiology , Humans , Infant , Pandemics , Physical Distancing , Respiratory Syncytial Virus Infections/epidemiology , SARS-CoV-2 , Seasons
11.
PLoS Comput Biol ; 17(3): e1008785, 2021 03.
Article in English | MEDLINE | ID: covidwho-1181165

ABSTRACT

Non-human primates infected with SARS-CoV-2 exhibit mild clinical signs. Here we used a mathematical model to characterize in detail the viral dynamics in 31 cynomolgus macaques for which nasopharyngeal and tracheal viral load were frequently assessed. We identified that infected cells had a large burst size (>104 virus) and a within-host reproductive basic number of approximately 6 and 4 in nasopharyngeal and tracheal compartment, respectively. After peak viral load, infected cells were rapidly lost with a half-life of 9 hours, with no significant association between cytokine elevation and clearance, leading to a median time to viral clearance of 10 days, consistent with observations in mild human infections. Given these parameter estimates, we predict that a prophylactic treatment blocking 90% of viral production or viral infection could prevent viral growth. In conclusion, our results provide estimates of SARS-CoV-2 viral kinetic parameters in an experimental model of mild infection and they provide means to assess the efficacy of future antiviral treatments.


Subject(s)
COVID-19/virology , Macaca fascicularis/virology , SARS-CoV-2/physiology , Animals , Antiviral Agents/pharmacology , Basic Reproduction Number , COVID-19/blood , COVID-19/prevention & control , Cytokines/blood , Disease Models, Animal , Nasopharynx/virology , SARS-CoV-2/drug effects , Trachea/virology , Viral Load , Virus Replication/drug effects
12.
Euro Surveill ; 26(13)2021 04.
Article in English | MEDLINE | ID: covidwho-1167263

ABSTRACT

BackgroundChildren have a low rate of COVID-19 and secondary severe multisystem inflammatory syndrome (MIS) but present a high prevalence of symptomatic seasonal coronavirus infections.AimWe tested if prior infections by seasonal coronaviruses (HCoV) NL63, HKU1, 229E or OC43 as assessed by serology, provide cross-protective immunity against SARS-CoV-2 infection.MethodsWe set a cross-sectional observational multicentric study in pauci- or asymptomatic children hospitalised in Paris during the first wave for reasons other than COVID (hospitalised children (HOS), n = 739) plus children presenting with MIS (n = 36). SARS-CoV-2 antibodies directed against the nucleoprotein (N) and S1 and S2 domains of the spike (S) proteins were monitored by an in-house luciferase immunoprecipitation system assay. We randomly selected 69 SARS-CoV-2-seropositive patients (including 15 with MIS) and 115 matched SARS-CoV-2-seronegative patients (controls (CTL)). We measured antibodies against SARS-CoV-2 and HCoV as evidence for prior corresponding infections and assessed if SARS-CoV-2 prevalence of infection and levels of antibody responses were shaped by prior seasonal coronavirus infections.ResultsPrevalence of HCoV infections were similar in HOS, MIS and CTL groups. Antibody levels against HCoV were not significantly different in the three groups and were not related to the level of SARS-CoV-2 antibodies in the HOS and MIS groups. SARS-CoV-2 antibody profiles were different between HOS and MIS children.ConclusionPrior infection by seasonal coronaviruses, as assessed by serology, does not interfere with SARS-CoV-2 infection and related MIS in children.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Coronavirus OC43, Human , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome , Adolescent , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , Child , Child, Preschool , Cross-Sectional Studies , Female , France/epidemiology , Humans , Infant , Infant, Newborn , Male , Paris , Seasons , Serologic Tests/methods , Spike Glycoprotein, Coronavirus
13.
Euro Surveill ; 26(9)2021 03.
Article in English | MEDLINE | ID: covidwho-1154191

ABSTRACT

The emergence of SARS-CoV-2 variant 20I/501Y.V1 (VOC-202012/1 or GR/501Y.V1) is concerning given its increased transmissibility. We reanalysed 11,916 PCR-positive tests (41% of all positive tests) performed on 7-8 January 2021 in France. The prevalence of 20I/501Y.V1 was 3.3% among positive tests nationwide and 6.9% in the Paris region. Analysing the recent rise in the prevalence of 20I/501Y.V1, we estimate that, in the French context, 20I/501Y.V1 is 52-69% more transmissible than the previously circulating lineages, depending on modelling assumptions.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , France/epidemiology , Humans , Paris
14.
Nat Med ; 27(5): 917-924, 2021 05.
Article in English | MEDLINE | ID: covidwho-1152868

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 and B.1.351 variants were first identified in the United Kingdom and South Africa, respectively, and have since spread to many countries. These variants harboring diverse mutations in the gene encoding the spike protein raise important concerns about their immune evasion potential. Here, we isolated infectious B.1.1.7 and B.1.351 strains from acutely infected individuals. We examined sensitivity of the two variants to SARS-CoV-2 antibodies present in sera and nasal swabs from individuals infected with previously circulating strains or who were recently vaccinated, in comparison with a D614G reference virus. We utilized a new rapid neutralization assay, based on reporter cells that become positive for GFP after overnight infection. Sera from 58 convalescent individuals collected up to 9 months after symptoms, similarly neutralized B.1.1.7 and D614G. In contrast, after 9 months, convalescent sera had a mean sixfold reduction in neutralizing titers, and 40% of the samples lacked any activity against B.1.351. Sera from 19 individuals vaccinated twice with Pfizer Cominarty, longitudinally tested up to 6 weeks after vaccination, were similarly potent against B.1.1.7 but less efficacious against B.1.351, when compared to D614G. Neutralizing titers increased after the second vaccine dose, but remained 14-fold lower against B.1.351. In contrast, sera from convalescent or vaccinated individuals similarly bound the three spike proteins in a flow cytometry-based serological assay. Neutralizing antibodies were rarely detected in nasal swabs from vaccinees. Thus, faster-spreading SARS-CoV-2 variants acquired a partial resistance to neutralizing antibodies generated by natural infection or vaccination, which was most frequently detected in individuals with low antibody levels. Our results indicate that B1.351, but not B.1.1.7, may increase the risk of infection in immunized individuals.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Convalescence , Cross Reactions , Humans , Neutralization Tests , Sensitivity and Specificity , Vaccination
16.
One Health ; 10: 100164, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-733676

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, in 2019, is responsible for the COVID-19 pandemic. It is now accepted that the wild fauna, probably bats, constitute the initial reservoir of the virus, but little is known about the role pets can play in the spread of the disease in human communities, knowing the ability of SARS-CoV-2 to infect some domestic animals. In this cross-sectional study, we tested the antibody response in a cluster of 21 domestic pets (9 cats and 12 dogs) living in close contact with their owners (belonging to a veterinary community of 20 students) in which two students tested positive for COVID-19 and several others (n = 11/18) consecutively showed clinical signs (fever, cough, anosmia, etc.) compatible with COVID-19 infection. Although a few pets presented many clinical signs indicative for a coronavirus infection, no antibodies against SARS-CoV-2 were detectable in their blood one month after the index case was reported, using an immunoprecipitation assay. These original data can serve a better evaluation of the host range of SARS-CoV-2 in natural environment exposure conditions.

17.
Sci Transl Med ; 12(559)2020 09 02.
Article in English | MEDLINE | ID: covidwho-724557

ABSTRACT

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their differing antibody response profiles. Here, we performed a pilot study of four serological assays to assess the amounts of anti-SARS-CoV-2 antibodies in serum samples obtained from 491 healthy individuals before the SARS-CoV-2 pandemic, 51 individuals hospitalized with COVID-19, 209 suspected cases of COVID-19 with mild symptoms, and 200 healthy blood donors. We used two ELISA assays that recognized the full-length nucleoprotein (N) or trimeric spike (S) protein ectodomain of SARS-CoV-2. In addition, we developed the S-Flow assay that recognized the S protein expressed at the cell surface using flow cytometry, and the luciferase immunoprecipitation system (LIPS) assay that recognized diverse SARS-CoV-2 antigens including the S1 domain and the carboxyl-terminal domain of N by immunoprecipitation. We obtained similar results with the four serological assays. Differences in sensitivity were attributed to the technique and the antigen used. High anti-SARS-CoV-2 antibody titers were associated with neutralization activity, which was assessed using infectious SARS-CoV-2 or lentiviral-S pseudotype virus. In hospitalized patients with COVID-19, seroconversion and virus neutralization occurred between 5 and 14 days after symptom onset, confirming previous studies. Seropositivity was detected in 32% of mildly symptomatic individuals within 15 days of symptom onset and in 3% of healthy blood donors. The four antibody assays that we used enabled a broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different subpopulations within one region.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Cohort Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Enzyme-Linked Immunosorbent Assay/methods , Female , Flow Cytometry/methods , France/epidemiology , Healthy Volunteers , Humans , Immunoprecipitation/methods , Luciferases , Male , Middle Aged , Neutralization Tests , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Young Adult
18.
Nature ; 585(7826): 584-587, 2020 09.
Article in English | MEDLINE | ID: covidwho-664587

ABSTRACT

Coronavirus disease 2019 (COVID-19) has rapidly become a global pandemic and no antiviral drug or vaccine is yet available for the treatment of this disease1-3. Several clinical studies are ongoing to evaluate the efficacy of repurposed drugs that have demonstrated antiviral efficacy in vitro. Among these candidates, hydroxychloroquine (HCQ) has been given to thousands of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the virus that causes COVID-19-worldwide but there is no definitive evidence that HCQ is effective for treating COVID-194-7. Here we evaluated the antiviral activity of HCQ both in vitro and in SARS-CoV-2-infected macaques. HCQ showed antiviral activity in African green monkey kidney cells (Vero E6) but not in a model of reconstituted human airway epithelium. In macaques, we tested different treatment strategies in comparison to a placebo treatment, before and after peak viral load, alone or in combination with azithromycin (AZTH). Neither HCQ nor the combination of HCQ and AZTH showed a significant effect on viral load in any of the analysed tissues. When the drug was used as a pre-exposure prophylaxis treatment, HCQ did not confer protection against infection with SARS-CoV-2. Our findings do not support the use of HCQ, either alone or in combination with AZTH, as an antiviral drug for the treatment of COVID-19 in humans.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Animals , Azithromycin/pharmacology , Azithromycin/therapeutic use , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Cytokines/blood , Disease Models, Animal , Female , Humans , Hydroxychloroquine/pharmacokinetics , Hydroxychloroquine/pharmacology , In Vitro Techniques , Kinetics , Macaca fascicularis , Male , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Pre-Exposure Prophylaxis , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS-CoV-2 , Time Factors , Treatment Failure , Vero Cells , Viral Load/drug effects
19.
Euro Surveill ; 25(26)2020 07.
Article in English | MEDLINE | ID: covidwho-639489

ABSTRACT

Following SARS-CoV-2 emergence in China, a specific surveillance was implemented in France. Phylogenetic analysis of sequences retrieved through this surveillance suggests that detected initial introductions, involving non-clade G viruses, did not seed local transmission. Nevertheless, identification of clade G variants subsequently circulating in the country, with the earliest from a patient who neither travelled to risk areas nor had contact with travellers, suggests that SARS-CoV-2 might have been present before the first recorded local cases.


Subject(s)
Coronavirus Infections/genetics , Coronavirus/genetics , Disease Outbreaks/prevention & control , Sentinel Surveillance , Betacoronavirus , COVID-19 , Coronavirus/classification , Coronavirus/isolation & purification , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , France/epidemiology , Genome, Viral/genetics , Humans , Pandemics/prevention & control , Phylogeny , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sequence Analysis , Viral Proteins/genetics
20.
Euro Surveill ; 25(14)2020 04.
Article in English | MEDLINE | ID: covidwho-47747

ABSTRACT

Several French regions where coronavirus disease (COVID-19) has been reported currently show a renewed increase in ILI cases in the general practice-based Sentinelles network. We computed the number of excess cases by region from 24 February to 8 March 2020 and found a correlation with the number of reported COVID-19 cases so far. The data suggest larger circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the French population than apparent from confirmed cases.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus , Influenza, Human/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Sentinel Surveillance , Betacoronavirus , COVID-19 , Coronavirus Infections/transmission , Disease Outbreaks , France/epidemiology , Humans , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL