Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
NPJ Digit Med ; 5(1): 74, 2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-1890276

ABSTRACT

Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems, countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard demographics at admission, and comorbidity burden pre-admission. These models were compared at site, country, and continent level. Of the 39,969 hospitalized patients with COVID-19 (68.6% male), 5717 (14.3%) died. In the Cox model, age, albumin, AST, creatine, CRP, and white blood cell count are most predictive of mortality. The baseline covariates are more predictive of mortality during the early days of COVID-19 hospitalization. Models trained at healthcare systems with larger cohort size largely retain good transportability performance when porting to different sites. The combination of routine laboratory test values at admission along with basic demographic features can predict mortality in patients hospitalized with COVID-19. Importantly, this potentially deployable model differs from prior work by demonstrating not only consistent performance but also reliable transportability across healthcare systems in the US and Europe, highlighting the generalizability of this model and the overall approach.

2.
J Am Med Inform Assoc ; 28(8): 1765-1776, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1246728

ABSTRACT

OBJECTIVE: To utilize, in an individual and institutional privacy-preserving manner, electronic health record (EHR) data from 202 hospitals by analyzing answers to COVID-19-related questions and posting these answers online. MATERIALS AND METHODS: We developed a distributed, federated network of 12 health systems that harmonized their EHRs and submitted aggregate answers to consortia questions posted at https://www.covid19questions.org. Our consortium developed processes and implemented distributed algorithms to produce answers to a variety of questions. We were able to generate counts, descriptive statistics, and build a multivariate, iterative regression model without centralizing individual-level data. RESULTS: Our public website contains answers to various clinical questions, a web form for users to ask questions in natural language, and a list of items that are currently pending responses. The results show, for example, that patients who were taking angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, within the year before admission, had lower unadjusted in-hospital mortality rates. We also showed that, when adjusted for, age, sex, and ethnicity were not significantly associated with mortality. We demonstrated that it is possible to answer questions about COVID-19 using EHR data from systems that have different policies and must follow various regulations, without moving data out of their health systems. DISCUSSION AND CONCLUSIONS: We present an alternative or a complement to centralized COVID-19 registries of EHR data. We can use multivariate distributed logistic regression on observations recorded in the process of care to generate results without transferring individual-level data outside the health systems.


Subject(s)
Algorithms , COVID-19 , Computer Communication Networks , Confidentiality , Electronic Health Records , Information Storage and Retrieval/methods , Natural Language Processing , Common Data Elements , Female , Humans , Logistic Models , Male , Registries
3.
J Am Med Inform Assoc ; 28(7): 1411-1420, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1075534

ABSTRACT

OBJECTIVE: The Consortium for Clinical Characterization of COVID-19 by EHR (4CE) is an international collaboration addressing coronavirus disease 2019 (COVID-19) with federated analyses of electronic health record (EHR) data. We sought to develop and validate a computable phenotype for COVID-19 severity. MATERIALS AND METHODS: Twelve 4CE sites participated. First, we developed an EHR-based severity phenotype consisting of 6 code classes, and we validated it on patient hospitalization data from the 12 4CE clinical sites against the outcomes of intensive care unit (ICU) admission and/or death. We also piloted an alternative machine learning approach and compared selected predictors of severity with the 4CE phenotype at 1 site. RESULTS: The full 4CE severity phenotype had pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of individual code categories for acuity had high variability-up to 0.65 across sites. At one pilot site, the expert-derived phenotype had mean area under the curve of 0.903 (95% confidence interval, 0.886-0.921), compared with an area under the curve of 0.956 (95% confidence interval, 0.952-0.959) for the machine learning approach. Billing codes were poor proxies of ICU admission, with as low as 49% precision and recall compared with chart review. DISCUSSION: We developed a severity phenotype using 6 code classes that proved resilient to coding variability across international institutions. In contrast, machine learning approaches may overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold-standard outcomes, possibly owing to heterogeneous pandemic conditions. CONCLUSIONS: We developed an EHR-based severity phenotype for COVID-19 in hospitalized patients and validated it at 12 international sites.


Subject(s)
COVID-19 , Electronic Health Records , Severity of Illness Index , COVID-19/classification , Hospitalization , Humans , Machine Learning , Prognosis , ROC Curve , Sensitivity and Specificity
4.
medRxiv ; 2020 Sep 23.
Article in English | MEDLINE | ID: covidwho-808753

ABSTRACT

There is an urgent need to answer questions related to COVID-19's clinical course and associations with underlying conditions and health outcomes. Multi-center data are necessary to generate reliable answers, but centralizing data in a single repository is not always possible. Using a privacy-protecting strategy, we launched a public Questions & Answers web portal (https://covid19questions.org) with analyses of comorbidities, medications and laboratory tests using data from 202 hospitals (59,074 COVID-19 patients) in the USA and Germany. We find, for example, that 8.6% of hospitalizations in which the patient was not admitted to the ICU resulted in the patient returning to the hospital within seven days from discharge and that, when adjusted for age, mortality for hospitalized patients was not significantly different by gender or ethnicity.

5.
NPJ Digit Med ; 3: 109, 2020.
Article in English | MEDLINE | ID: covidwho-728999

ABSTRACT

We leveraged the largely untapped resource of electronic health record data to address critical clinical and epidemiological questions about Coronavirus Disease 2019 (COVID-19). To do this, we formed an international consortium (4CE) of 96 hospitals across five countries (www.covidclinical.net). Contributors utilized the Informatics for Integrating Biology and the Bedside (i2b2) or Observational Medical Outcomes Partnership (OMOP) platforms to map to a common data model. The group focused on temporal changes in key laboratory test values. Harmonized data were analyzed locally and converted to a shared aggregate form for rapid analysis and visualization of regional differences and global commonalities. Data covered 27,584 COVID-19 cases with 187,802 laboratory tests. Case counts and laboratory trajectories were concordant with existing literature. Laboratory tests at the time of diagnosis showed hospital-level differences equivalent to country-level variation across the consortium partners. Despite the limitations of decentralized data generation, we established a framework to capture the trajectory of COVID-19 disease in patients and their response to interventions.

SELECTION OF CITATIONS
SEARCH DETAIL