Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Wellcome Open Res ; 6: 279, 2021.
Article in English | MEDLINE | ID: covidwho-1732490

ABSTRACT

Background: Industrialised countries had varied responses to the coronavirus disease 2019 (COVID-19) pandemic, and how they adapted to new situations and knowledge since it began. These differences in preparedness and policy may lead to different death tolls from COVID-19 as well as other diseases. Methods: We applied an ensemble of 16 Bayesian probabilistic models to vital statistics data to estimate the impacts of the pandemic on weekly all-cause mortality for 40 industrialised countries from mid-February 2020 through mid-February 2021, before a large segment of the population was vaccinated in these countries. Results: Over the entire year, an estimated 1,410,300 (95% credible interval 1,267,600-1,579,200) more people died in these countries than would have been expected had the pandemic not happened. This is equivalent to 141 (127-158) additional deaths per 100,000 people and a 15% (14-17) increase in deaths in all these countries combined. In Iceland, Australia and New Zealand, mortality was lower than would be expected if the pandemic had not occurred, while South Korea and Norway experienced no detectable change in mortality. In contrast, the USA, Czechia, Slovakia and Poland experienced at least 20% higher mortality. There was substantial heterogeneity across countries in the dynamics of excess mortality. The first wave of the pandemic, from mid-February to the end of May 2020, accounted for over half of excess deaths in Scotland, Spain, England and Wales, Canada, Sweden, Belgium, the Netherlands and Cyprus. At the other extreme, the period between mid-September 2020 and mid-February 2021 accounted for over 90% of excess deaths in Bulgaria, Croatia, Czechia, Hungary, Latvia, Montenegro, Poland, Slovakia and Slovenia. Conclusions: Until the great majority of national and global populations have vaccine-acquired immunity, minimising the death toll of the pandemic from COVID-19 and other diseases will require actions to delay and contain infections and continue routine health care.

2.
Wellcome open research ; 6:279, 2021.
Article in English | EuropePMC | ID: covidwho-1732489

ABSTRACT

Background: Industrialised countries had varied responses to the coronavirus disease 2019 (COVID-19) pandemic, and how they adapted to new situations and knowledge since it began. These differences in preparedness and policy may lead to different death tolls from COVID-19 as well as other diseases. Methods: We applied an ensemble of 16 Bayesian probabilistic models to vital statistics data to estimate the impacts of the pandemic on weekly all-cause mortality for 40 industrialised countries from mid-February 2020 through mid-February 2021, before a large segment of the population was vaccinated in these countries. Results: Over the entire year, an estimated 1,410,300 (95% credible interval 1,267,600-1,579,200) more people died in these countries than would have been expected had the pandemic not happened. This is equivalent to 141 (127-158) additional deaths per 100,000 people and a 15% (14-17) increase in deaths in all these countries combined. In Iceland, Australia and New Zealand, mortality was lower than would be expected if the pandemic had not occurred, while South Korea and Norway experienced no detectable change in mortality. In contrast, the USA, Czechia, Slovakia and Poland experienced at least 20% higher mortality. There was substantial heterogeneity across countries in the dynamics of excess mortality. The first wave of the pandemic, from mid-February to the end of May 2020, accounted for over half of excess deaths in Scotland, Spain, England and Wales, Canada, Sweden, Belgium, the Netherlands and Cyprus. At the other extreme, the period between mid-September 2020 and mid-February 2021 accounted for over 90% of excess deaths in Bulgaria, Croatia, Czechia, Hungary, Latvia, Montenegro, Poland, Slovakia and Slovenia. Conclusions: Until the great majority of national and global populations have vaccine-acquired immunity, minimising the death toll of the pandemic from COVID-19 and other diseases will require actions to delay and contain infections and continue routine health care.

3.
Wellcome open research ; 6, 2021.
Article in English | EuropePMC | ID: covidwho-1728267

ABSTRACT

Background: Industrialised countries had varied responses to the COVID-19 pandemic, which may lead to different death tolls from COVID-19 and other diseases. Methods: We applied an ensemble of 16 Bayesian probabilistic models to vital statistics data to estimate the number of weekly deaths if the pandemic had not occurred for 40 industrialised countries and US states from mid-February 2020 through mid-February 2021. We subtracted these estimates from the actual number of deaths to calculate the impacts of the pandemic on all-cause mortality. Results: Over this year, there were 1,410,300 (95% credible interval 1,267,600-1,579,200) excess deaths in these countries, equivalent to a 15% (14-17) increase, and 141 (127-158) additional deaths per 100,000 people. In Iceland, Australia and New Zealand, mortality was lower than would be expected in the absence of the pandemic, while South Korea and Norway experienced no detectable change. The USA, Czechia, Slovakia and Poland experienced >20% higher mortality. Within the USA, Hawaii experienced no detectable change in mortality and Maine a 5% increase, contrasting with New Jersey, Arizona, Mississippi, Texas, California, Louisiana and New York which experienced >25% higher mortality. Mid-February to the end of May 2020 accounted for over half of excess deaths in Scotland, Spain, England and Wales, Canada, Sweden, Belgium, the Netherlands and Cyprus, whereas mid-September 2020 to mid-February 2021 accounted for >90% of excess deaths in Bulgaria, Croatia, Czechia, Hungary, Latvia, Montenegro, Poland, Slovakia and Slovenia. In USA, excess deaths in the northeast were driven mainly by the first wave, in southern and southwestern states by the summer wave, and in the northern plains by the post-September period. Conclusions: Prior to widespread vaccine-acquired immunity, minimising the overall death toll of the pandemic requires policies and non-pharmaceutical interventions that delay and reduce infections, effective treatments for infected patients, and mechanisms to continue routine health care.

4.
Lancet Public Health ; 6(11): e805-e816, 2021 11.
Article in English | MEDLINE | ID: covidwho-1467001

ABSTRACT

BACKGROUND: High-resolution data for how mortality and longevity have changed in England, UK are scarce. We aimed to estimate trends from 2002 to 2019 in life expectancy and probabilities of death at different ages for all 6791 middle-layer super output areas (MSOAs) in England. METHODS: We performed a high-resolution spatiotemporal analysis of civil registration data from the UK Small Area Health Statistics Unit research database using de-identified data for all deaths in England from 2002 to 2019, with information on age, sex, and MSOA of residence, and population counts by age, sex, and MSOA. We used a Bayesian hierarchical model to obtain estimates of age-specific death rates by sharing information across age groups, MSOAs, and years. We used life table methods to calculate life expectancy at birth and probabilities of death in different ages by sex and MSOA. FINDINGS: In 2002-06 and 2006-10, all but a few (0-1%) MSOAs had a life expectancy increase for female and male sexes. In 2010-14, female life expectancy decreased in 351 (5·2%) of 6791 MSOAs. By 2014-19, the number of MSOAs with declining life expectancy was 1270 (18·7%) for women and 784 (11·5%) for men. The life expectancy increase from 2002 to 2019 was smaller in MSOAs where life expectancy had been lower in 2002 (mostly northern urban MSOAs), and larger in MSOAs where life expectancy had been higher in 2002 (mostly MSOAs in and around London). As a result of these trends, the gap between the first and 99th percentiles of MSOA life expectancy for women increased from 10·7 years (95% credible interval 10·4-10·9) in 2002 to reach 14·2 years (13·9-14·5) in 2019, and for men increased from 11·5 years (11·3-11·7) in 2002 to 13·6 years (13·4-13·9) in 2019. INTERPRETATION: In the decade before the COVID-19 pandemic, life expectancy declined in increasing numbers of communities in England. To ensure that this trend does not continue or worsen, there is a need for pro-equity economic and social policies, and greater investment in public health and health care throughout the entire country. FUNDING: Wellcome Trust, Imperial College London, Medical Research Council, Health Data Research UK, and National Institutes of Health Research.


Subject(s)
Life Expectancy/trends , Mortality/trends , Adolescent , Adult , Aged , Aged, 80 and over , Bayes Theorem , Child , Child, Preschool , England/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Registries , Residence Characteristics/statistics & numerical data , Risk Assessment , Spatio-Temporal Analysis , Young Adult
6.
Nat Med ; 26(12): 1919-1928, 2020 12.
Article in English | MEDLINE | ID: covidwho-872715

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has changed many social, economic, environmental and healthcare determinants of health. We applied an ensemble of 16 Bayesian models to vital statistics data to estimate the all-cause mortality effect of the pandemic for 21 industrialized countries. From mid-February through May 2020, 206,000 (95% credible interval, 178,100-231,000) more people died in these countries than would have had the pandemic not occurred. The number of excess deaths, excess deaths per 100,000 people and relative increase in deaths were similar between men and women in most countries. England and Wales and Spain experienced the largest effect: ~100 excess deaths per 100,000 people, equivalent to a 37% (30-44%) relative increase in England and Wales and 38% (31-45%) in Spain. Bulgaria, New Zealand, Slovakia, Australia, Czechia, Hungary, Poland, Norway, Denmark and Finland experienced mortality changes that ranged from possible small declines to increases of 5% or less in either sex. The heterogeneous mortality effects of the COVID-19 pandemic reflect differences in how well countries have managed the pandemic and the resilience and preparedness of the health and social care system.


Subject(s)
COVID-19/mortality , Demography , Developed Countries/statistics & numerical data , Mortality , Pandemics , Population Dynamics , COVID-19/epidemiology , Cause of Death/trends , Female , Geography , Humans , Industrial Development/statistics & numerical data , Male , Mortality/trends , Population Density , Population Dynamics/statistics & numerical data , Population Dynamics/trends , Public Policy , SARS-CoV-2/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL