Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Clin Oncol ; : JCO2102419, 2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1741971

ABSTRACT

PURPOSE: To provide real-world evidence on risks and outcomes of breakthrough COVID-19 infections in vaccinated patients with cancer using the largest national cohort of COVID-19 cases and controls. METHODS: We used the National COVID Cohort Collaborative (N3C) to identify breakthrough infections between December 1, 2020, and May 31, 2021. We included patients partially or fully vaccinated with mRNA COVID-19 vaccines with no prior SARS-CoV-2 infection record. Risks for breakthrough infection and severe outcomes were analyzed using logistic regression. RESULTS: A total of 6,860 breakthrough cases were identified within the N3C-vaccinated population, among whom 1,460 (21.3%) were patients with cancer. Solid tumors and hematologic malignancies had significantly higher risks for breakthrough infection (odds ratios [ORs] = 1.12, 95% CI, 1.01 to 1.23 and 4.64, 95% CI, 3.98 to 5.38) and severe outcomes (ORs = 1.33, 95% CI, 1.09 to 1.62 and 1.45, 95% CI, 1.08 to 1.95) compared with noncancer patients, adjusting for age, sex, race/ethnicity, smoking status, vaccine type, and vaccination date. Compared with solid tumors, hematologic malignancies were at increased risk for breakthrough infections (adjusted OR ranged from 2.07 for lymphoma to 7.25 for lymphoid leukemia). Breakthrough risk was reduced after the second vaccine dose for all cancers (OR = 0.04; 95% CI, 0.04 to 0.05), and for Moderna's mRNA-1273 compared with Pfizer's BNT162b2 vaccine (OR = 0.66; 95% CI, 0.62 to 0.70), particularly in patients with multiple myeloma (OR = 0.35; 95% CI, 0.15 to 0.72). Medications with major immunosuppressive effects and bone marrow transplantation were strongly associated with breakthrough risk among the vaccinated population. CONCLUSION: Real-world evidence shows that patients with cancer, especially hematologic malignancies, are at higher risk for developing breakthrough infections and severe outcomes. Patients with vaccination were at markedly decreased risk for breakthrough infections. Further work is needed to assess boosters and new SARS-CoV-2 variants.

2.
Innovation in aging ; 5(Suppl 1):974-975, 2021.
Article in English | EuropePMC | ID: covidwho-1602494

ABSTRACT

Older age has been consistently associated with adverse COVID-19 outcomes. Frailty, a syndrome characterized by declining function across multiple body systems is common in older adults and may increase vulnerability to adverse outcomes among COVID-19 patients. However, the impacts of frailty on COVID-19 management, severity, or outcomes have not been well characterized in a large, representative US population. Using the National COVID Cohort Collaborative, a multi-institutional US repository for COVID-19 research, we calculated the Hospital Frailty Risk Score (HFRS), a validated EHR-based frailty score, among COVID-19 inpatients age ≥ 65. We examined patient demographics and comorbidities, length of stay (LOS), systemic corticosteroid and remdesivir use, ICU admission, and inpatient mortality across subgroups by HFRS score. Among 58,964 inpatients from 53 institutions (51% male, 65% White, 18% Black, 9% Hispanic, mean age 75, mean Charlson comorbidity count 3.0, and median LOS 7 days), 38,692 (66%), 4,180 (7%), 3,531 (6%), 3,525 (6%) and 7,862 (13%) had HFRS scores of 0-1, 2, 3, 4, and >=5 , respectively. Frailty was only moderately correlated with age and comorbidity (□=0.178 and 0.348, respectively, p<0.001). Overall, 34% received systemic corticosteroid and 19% received remdesivir. We observed 4% ICU admissions and 16% inpatient death. Among non-ICU admissions, after adjusting for demographics and comorbidities, frailty (HFRS ≥ 2) was associated with 79% greater systemic corticosteroid use and 22% greater remdesivir use, whereas a higher HRFS score was marginally associated with higher rates of severe COVID disease, inpatient death, or ICU admission.

3.
J Clin Oncol ; 39(35): 3997-3998, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1581947
4.
EBioMedicine ; 74: 103722, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1536517

ABSTRACT

BACKGROUND: Numerous publications describe the clinical manifestations of post-acute sequelae of SARS-CoV-2 (PASC or "long COVID"), but they are difficult to integrate because of heterogeneous methods and the lack of a standard for denoting the many phenotypic manifestations. Patient-led studies are of particular importance for understanding the natural history of COVID-19, but integration is hampered because they often use different terms to describe the same symptom or condition. This significant disparity in patient versus clinical characterization motivated the proposed ontological approach to specifying manifestations, which will improve capture and integration of future long COVID studies. METHODS: The Human Phenotype Ontology (HPO) is a widely used standard for exchange and analysis of phenotypic abnormalities in human disease but has not yet been applied to the analysis of COVID-19. FUNDING: We identified 303 articles published before April 29, 2021, curated 59 relevant manuscripts that described clinical manifestations in 81 cohorts three weeks or more following acute COVID-19, and mapped 287 unique clinical findings to HPO terms. We present layperson synonyms and definitions that can be used to link patient self-report questionnaires to standard medical terminology. Long COVID clinical manifestations are not assessed consistently across studies, and most manifestations have been reported with a wide range of synonyms by different authors. Across at least 10 cohorts, authors reported 31 unique clinical features corresponding to HPO terms; the most commonly reported feature was Fatigue (median 45.1%) and the least commonly reported was Nausea (median 3.9%), but the reported percentages varied widely between studies. INTERPRETATION: Translating long COVID manifestations into computable HPO terms will improve analysis, data capture, and classification of long COVID patients. If researchers, clinicians, and patients share a common language, then studies can be compared/pooled more effectively. Furthermore, mapping lay terminology to HPO will help patients assist clinicians and researchers in creating phenotypic characterizations that are computationally accessible, thereby improving the stratification, diagnosis, and treatment of long COVID. FUNDING: U24TR002306; UL1TR001439; P30AG024832; GBMF4552; R01HG010067; UL1TR002535; K23HL128909; UL1TR002389; K99GM145411.


Subject(s)
COVID-19/complications , COVID-19/pathology , COVID-19/diagnosis , Humans , SARS-CoV-2
5.
J Clin Oncol ; 39(20): 2232-2246, 2021 07 10.
Article in English | MEDLINE | ID: covidwho-1484813

ABSTRACT

PURPOSE: Variation in risk of adverse clinical outcomes in patients with cancer and COVID-19 has been reported from relatively small cohorts. The NCATS' National COVID Cohort Collaborative (N3C) is a centralized data resource representing the largest multicenter cohort of COVID-19 cases and controls nationwide. We aimed to construct and characterize the cancer cohort within N3C and identify risk factors for all-cause mortality from COVID-19. METHODS: We used 4,382,085 patients from 50 US medical centers to construct a cohort of patients with cancer. We restricted analyses to adults ≥ 18 years old with a COVID-19-positive or COVID-19-negative diagnosis between January 1, 2020, and March 25, 2021. We followed N3C selection of an index encounter per patient for analyses. All analyses were performed in the N3C Data Enclave Palantir platform. RESULTS: A total of 398,579 adult patients with cancer were identified from the N3C cohort; 63,413 (15.9%) were COVID-19-positive. Most common represented cancers were skin (13.8%), breast (13.7%), prostate (10.6%), hematologic (10.5%), and GI cancers (10%). COVID-19 positivity was significantly associated with increased risk of all-cause mortality (hazard ratio, 1.20; 95% CI, 1.15 to 1.24). Among COVID-19-positive patients, age ≥ 65 years, male gender, Southern or Western US residence, an adjusted Charlson Comorbidity Index score ≥ 4, hematologic malignancy, multitumor sites, and recent cytotoxic therapy were associated with increased risk of all-cause mortality. Patients who received recent immunotherapies or targeted therapies did not have higher risk of overall mortality. CONCLUSION: Using N3C, we assembled the largest nationally representative cohort of patients with cancer and COVID-19 to date. We identified demographic and clinical factors associated with increased all-cause mortality in patients with cancer. Full characterization of the cohort will provide further insights into the effects of COVID-19 on cancer outcomes and the ability to continue specific cancer treatments.


Subject(s)
COVID-19/therapy , Neoplasms/mortality , Adolescent , Adult , Aged , COVID-19/diagnosis , COVID-19/mortality , Case-Control Studies , Cause of Death , Electronic Health Records , Female , Humans , Male , Middle Aged , Neoplasms/diagnosis , Neoplasms/therapy , Prognosis , Registries , Risk Assessment , Risk Factors , Time Factors , United States , Young Adult
6.
JAMA Netw Open ; 4(10): e2124946, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1460117

ABSTRACT

Importance: Machine learning could be used to predict the likelihood of diagnosis and severity of illness. Lack of COVID-19 patient data has hindered the data science community in developing models to aid in the response to the pandemic. Objectives: To describe the rapid development and evaluation of clinical algorithms to predict COVID-19 diagnosis and hospitalization using patient data by citizen scientists, provide an unbiased assessment of model performance, and benchmark model performance on subgroups. Design, Setting, and Participants: This diagnostic and prognostic study operated a continuous, crowdsourced challenge using a model-to-data approach to securely enable the use of regularly updated COVID-19 patient data from the University of Washington by participants from May 6 to December 23, 2020. A postchallenge analysis was conducted from December 24, 2020, to April 7, 2021, to assess the generalizability of models on the cumulative data set as well as subgroups stratified by age, sex, race, and time of COVID-19 test. By December 23, 2020, this challenge engaged 482 participants from 90 teams and 7 countries. Main Outcomes and Measures: Machine learning algorithms used patient data and output a score that represented the probability of patients receiving a positive COVID-19 test result or being hospitalized within 21 days after receiving a positive COVID-19 test result. Algorithms were evaluated using area under the receiver operating characteristic curve (AUROC) and area under the precision recall curve (AUPRC) scores. Ensemble models aggregating models from the top challenge teams were developed and evaluated. Results: In the analysis using the cumulative data set, the best performance for COVID-19 diagnosis prediction was an AUROC of 0.776 (95% CI, 0.775-0.777) and an AUPRC of 0.297, and for hospitalization prediction, an AUROC of 0.796 (95% CI, 0.794-0.798) and an AUPRC of 0.188. Analysis on top models submitting to the challenge showed consistently better model performance on the female group than the male group. Among all age groups, the best performance was obtained for the 25- to 49-year age group, and the worst performance was obtained for the group aged 17 years or younger. Conclusions and Relevance: In this diagnostic and prognostic study, models submitted by citizen scientists achieved high performance for the prediction of COVID-19 testing and hospitalization outcomes. Evaluation of challenge models on demographic subgroups and prospective data revealed performance discrepancies, providing insights into the potential bias and limitations in the models.


Subject(s)
Algorithms , Benchmarking , COVID-19/diagnosis , Clinical Decision Rules , Crowdsourcing , Hospitalization/statistics & numerical data , Machine Learning , Adolescent , Adult , Aged , Aged, 80 and over , Area Under Curve , COVID-19/epidemiology , COVID-19/therapy , COVID-19 Testing , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Models, Statistical , Prognosis , ROC Curve , Severity of Illness Index , Washington/epidemiology , Young Adult
7.
Diagn Microbiol Infect Dis ; 100(2): 115338, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1071250

ABSTRACT

We show that individuals with documented history of seasonal coronavirus have a similar SARS-CoV-2 infection rate and COVID-19 severity as those with no prior history of seasonal coronavirus. Our findings suggest prior infection with seasonal coronavirus does not provide immunity to subsequent infection with SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , Coronavirus Infections/epidemiology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Coronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cross Reactions/immunology , Humans , Polymerase Chain Reaction , Retrospective Studies , SARS-CoV-2/immunology , Seasons , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL