Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Open Heart ; 10(1)2023 02.
Article in English | MEDLINE | ID: covidwho-2283194

ABSTRACT

BACKGROUND: We investigated the associations of healthcare worker status with multisystem illness trajectory in hospitalised post-COVID-19 individuals. METHODS AND RESULTS: One hundred and sixty-eight patients were evaluated 28-60 days after the last episode of hospital care. Thirty-six (21%) were healthcare workers. Compared with non-healthcare workers, healthcare workers were of similar age (51.3 (8.7) years vs 55.0 (12.4) years; p=0.09) more often women (26 (72%) vs 48 (38%); p<0.01) and had lower 10-year cardiovascular risk (%) (8.1 (7.9) vs 15.0 (11.5); p<0.01) and Coronavirus Clinical Characterisation Consortium in-hospital mortality risk (7.3 (10.2) vs 12.7 (9.8); p<0.01). Healthcare worker status associated with less acute inflammation (peak C reactive protein 48 mg/L (IQR: 14-165) vs 112 mg/L (52-181)), milder illness reflected by WHO clinical severity score distribution (p=0.04) and shorter duration of admission (4 days (IQR: 2-6) vs 6 days (3-12)).In adjusted multivariate logistic regression analysis, healthcare worker status associated with a binary classification (probable/very likely vs not present/unlikely) of adjudicated myocarditis (OR: 2.99; 95% CI (1.01 to 8.89) by 28-60 days postdischarge).After a mean (SD, range) duration of follow-up after hospital discharge of 450 (88) days (range 290, 627 days), fewer healthcare workers died or were rehospitalised (1 (3%) vs 22 (17%); p=0.038) and secondary care referrals for post-COVID-19 syndrome were common (42%) and similar to non-healthcare workers (38%; p=0.934). CONCLUSION: Healthcare worker status was independently associated with the likelihood of adjudicated myocarditis, despite better antecedent health. Two in five healthcare workers had a secondary care referral for post-COVID-19 syndrome. TRIAL REGISTRATION NUMBER: NCT04403607.


Subject(s)
COVID-19 , Myocarditis , Female , Humans , Middle Aged , Aftercare , COVID-19/complications , COVID-19/diagnosis , Myocarditis/diagnosis , Myocarditis/epidemiology , Patient Discharge , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Health Personnel , Male , Adult , Aged
2.
Eur Heart J Cardiovasc Pharmacother ; 9(4): 371-386, 2023 06 02.
Article in English | MEDLINE | ID: covidwho-2283193

ABSTRACT

BACKGROUND: In post-coronavirus disease-19 (post-COVID-19) conditions (long COVID), systemic vascular dysfunction is implicated, but the mechanisms are uncertain, and the treatment is imprecise. METHODS AND RESULTS: Patients convalescing after hospitalization for COVID-19 and risk factor matched controls underwent multisystem phenotyping using blood biomarkers, cardiorenal and pulmonary imaging, and gluteal subcutaneous biopsy (NCT04403607). Small resistance arteries were isolated and examined using wire myography, histopathology, immunohistochemistry, and spatial transcriptomics. Endothelium-independent (sodium nitroprusside) and -dependent (acetylcholine) vasorelaxation and vasoconstriction to the thromboxane A2 receptor agonist, U46619, and endothelin-1 (ET-1) in the presence or absence of a RhoA/Rho-kinase inhibitor (fasudil), were investigated. Thirty-seven patients, including 27 (mean age 57 years, 48% women, 41% cardiovascular disease) 3 months post-COVID-19 and 10 controls (mean age 57 years, 20% women, 30% cardiovascular disease), were included. Compared with control responses, U46619-induced constriction was increased (P = 0.002) and endothelium-independent vasorelaxation was reduced in arteries from COVID-19 patients (P < 0.001). This difference was abolished by fasudil. Histopathology revealed greater collagen abundance in COVID-19 arteries {Masson's trichrome (MT) 69.7% [95% confidence interval (CI): 67.8-71.7]; picrosirius red 68.6% [95% CI: 64.4-72.8]} vs. controls [MT 64.9% (95% CI: 59.4-70.3) (P = 0.028); picrosirius red 60.1% (95% CI: 55.4-64.8), (P = 0.029)]. Greater phosphorylated myosin light chain antibody-positive staining in vascular smooth muscle cells was observed in COVID-19 arteries (40.1%; 95% CI: 30.9-49.3) vs. controls (10.0%; 95% CI: 4.4-15.6) (P < 0.001). In proof-of-concept studies, gene pathways associated with extracellular matrix alteration, proteoglycan synthesis, and viral mRNA replication appeared to be upregulated. CONCLUSION: Patients with post-COVID-19 conditions have enhanced vascular fibrosis and myosin light change phosphorylation. Rho-kinase activation represents a novel therapeutic target for clinical trials.


Subject(s)
COVID-19 , Cardiovascular Diseases , Humans , Female , Middle Aged , Male , rho-Associated Kinases/metabolism , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Post-Acute COVID-19 Syndrome
3.
J R Soc Med ; : 1410768221131897, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2233364

ABSTRACT

OBJECTIVES: To use national, pre- and post-pandemic electronic health records (EHR) to develop and validate a scenario-based model incorporating baseline mortality risk, infection rate (IR) and relative risk (RR) of death for prediction of excess deaths. DESIGN: An EHR-based, retrospective cohort study. SETTING: Linked EHR in Clinical Practice Research Datalink (CPRD); and linked EHR and COVID-19 data in England provided in NHS Digital Trusted Research Environment (TRE). PARTICIPANTS: In the development (CPRD) and validation (TRE) cohorts, we included 3.8 million and 35.1 million individuals aged ≥30 years, respectively. MAIN OUTCOME MEASURES: One-year all-cause excess deaths related to COVID-19 from March 2020 to March 2021. RESULTS: From 1 March 2020 to 1 March 2021, there were 127,020 observed excess deaths. Observed RR was 4.34% (95% CI, 4.31-4.38) and IR was 6.27% (95% CI, 6.26-6.28). In the validation cohort, predicted one-year excess deaths were 100,338 compared with the observed 127,020 deaths with a ratio of predicted to observed excess deaths of 0.79. CONCLUSIONS: We show that a simple, parsimonious model incorporating baseline mortality risk, one-year IR and RR of the pandemic can be used for scenario-based prediction of excess deaths in the early stages of a pandemic. Our analyses show that EHR could inform pandemic planning and surveillance, despite limited use in emergency preparedness to date. Although infection dynamics are important in the prediction of mortality, future models should take greater account of underlying conditions.

4.
Circulation ; 147(5): 364-374, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2223896

ABSTRACT

BACKGROUND: Acute myocardial injury in hospitalized patients with coronavirus disease 2019 (COVID-19) has a poor prognosis. Its associations and pathogenesis are unclear. Our aim was to assess the presence, nature, and extent of myocardial damage in hospitalized patients with troponin elevation. METHODS: Across 25 hospitals in the United Kingdom, 342 patients with COVID-19 and an elevated troponin level (COVID+/troponin+) were enrolled between June 2020 and March 2021 and had a magnetic resonance imaging scan within 28 days of discharge. Two prospective control groups were recruited, comprising 64 patients with COVID-19 and normal troponin levels (COVID+/troponin-) and 113 patients without COVID-19 or elevated troponin level matched by age and cardiovascular comorbidities (COVID-/comorbidity+). Regression modeling was performed to identify predictors of major adverse cardiovascular events at 12 months. RESULTS: Of the 519 included patients, 356 (69%) were men, with a median (interquartile range) age of 61.0 years (53.8, 68.8). The frequency of any heart abnormality, defined as left or right ventricular impairment, scar, or pericardial disease, was 2-fold greater in cases (61% [207/342]) compared with controls (36% [COVID+/troponin-] versus 31% [COVID-/comorbidity+]; P<0.001 for both). More cases than controls had ventricular impairment (17.2% versus 3.1% and 7.1%) or scar (42% versus 7% and 23%; P<0.001 for both). The myocardial injury pattern was different, with cases more likely than controls to have infarction (13% versus 2% and 7%; P<0.01) or microinfarction (9% versus 0% and 1%; P<0.001), but there was no difference in nonischemic scar (13% versus 5% and 14%; P=0.10). Using the Lake Louise magnetic resonance imaging criteria, the prevalence of probable recent myocarditis was 6.7% (23/342) in cases compared with 1.7% (2/113) in controls without COVID-19 (P=0.045). During follow-up, 4 patients died and 34 experienced a subsequent major adverse cardiovascular event (10.2%), which was similar to controls (6.1%; P=0.70). Myocardial scar, but not previous COVID-19 infection or troponin, was an independent predictor of major adverse cardiovascular events (odds ratio, 2.25 [95% CI, 1.12-4.57]; P=0.02). CONCLUSIONS: Compared with contemporary controls, patients with COVID-19 and elevated cardiac troponin level have more ventricular impairment and myocardial scar in early convalescence. However, the proportion with myocarditis was low and scar pathogenesis was diverse, including a newly described pattern of microinfarction. REGISTRATION: URL: https://www.isrctn.com; Unique identifier: 58667920.


Subject(s)
COVID-19 , Heart Injuries , Myocarditis , Female , Humans , Male , Middle Aged , Cicatrix , COVID-19/complications , COVID-19/epidemiology , Hospitalization , Prospective Studies , Risk Factors , Troponin , Aged
5.
Ann Intensive Care ; 12(1): 104, 2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2118723

ABSTRACT

BACKGROUND: Right ventricular (RV) dysfunction has been commonly reported in patients with Coronavirus disease 2019 (COVID-19), and is associated with mortality in mixed cohorts of patients requiring and not requiring invasive mechanical ventilation (IMV). Using RV-speckle tracking echocardiography (STE) strain analysis, we aimed to identify the prevalence of RV dysfunction (diagnosed by abnormal RV-STE) in patients with COVID-19 that are exclusively undergoing IMV, and assess association between RV dysfunction and 30 day mortality. We performed a prospective multicentre study across 10 ICUs in Scotland from 2/9/20 to 22/3/21. One-hundred-and-four echocardiography scans were obtained from adult patients at a single timepoint between 48 h after intubation, and day 14 of intensive care unit admission. We analysed RV-STE using RV free-wall longitudinal strain (RVFWLS), with an abnormal cutoff of > -20%. We performed survival analysis using Kaplan-Meier, log rank, and multivariate cox-regression (prespecified covariates were age, gender, ethnicity, severity of illness, and time since intubation). RESULTS: Ninety-four/one-hundred-and-four (90.4%) scans had images adequate for RVFWLS. Mean RVFWLS was -23.0% (5.2), 27/94 (28.7%) of patients had abnormal RVFWLS. Univariate analysis with Kaplan-Meier plot and log-rank demonstrated that patients with abnormal RVFWLS have a significant association with 30-day mortality (p = 0.047). Multivariate cox-regression demonstrated that abnormal RVFWLS is independently associated with 30-day mortality (Hazard-Ratio 2.22 [1.14-4.39], p = 0.020). CONCLUSIONS: Abnormal RVFWLS (> -20%) is independently associated with 30-day mortality in patients with COVID-19 undergoing IMV. Strategies to prevent RV dysfunction, and treatment when identified by RVFWLS, may be of therapeutic benefit to these patients. TRIAL REGISTRATION: Retrospectively registered 21st Feb 2021. CLINICALTRIALS: gov Identifier: NCT04764032.

6.
Br J Hosp Med (Lond) ; 83(8): 1-5, 2022 Aug 02.
Article in English | MEDLINE | ID: covidwho-2025626

ABSTRACT

The COVID-19 illness trajectory involves persistent cardio-renal inflammation, activation of the haemostatic pathway and lung involvement. Results of a study carried out by the authors' team demonstrate a link between post-COVID-19 syndrome (people who have long COVID) and multisystem disease, which partly explains the lingering impairments in patient-reported health-related quality of life, physical function and psychological wellbeing after COVID-19. This article discusses what hospital physicians need to be aware of when considering the likelihood of myocarditis in patients with post-COVID-19 syndrome and the implications in the longer term.


Subject(s)
COVID-19 , COVID-19/complications , Heart , Humans , Quality of Life , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
7.
Open Heart ; 9(1)2022 06.
Article in English | MEDLINE | ID: covidwho-1909813

ABSTRACT

INTRODUCTION: COVID-19 may lead to long-term endothelial consequences including hypertension, stroke and myocardial infarction. A pilot study 'COVID-19 blood pressure endothelium interaction study', which found that patients with normal blood pressure (BP) at the time of hospital admission with COVID-19 showed an 8.6 mm Hg higher BP ≥12 weeks after recovery, compared with a group without COVID-19. The 'LOnger-term effects of SARS-CoV-2 INfection on blood Vessels And blood pRessure'(LOCHINVAR) study is designed to provide definitive evidence of the long-term impact of COVID-19 on BP. METHODS AND ANALYSIS: The LOCHINVAR study is an observational clinical phenotyping study comparing longitudinal BP change between individuals with and without COVID-19 infection. 150 participants (30-60 years) with no history of hypertension and not on BP lowering medications will be recruited to the study to attend three visits (baseline, 12 months, 18 months). Cases will be patients who were admitted to the Queen Elizabeth University Hospital (QEUH), Glasgow, UK, with suspected/confirmed COVID-19 until 31 December 2021 and who were alive at discharge. Controls will be those who have never had confirmed COVID-19 infection. All participants will undergo clinical and vascular phenotyping studies which will include 24-hour ambulatory BP monitoring systolic BP (ABPM SBP), brachial flow-mediated dilatation urine and blood samples to assess the renin-angiotensin system, vascular inflammation and immune status. The primary outcome is the change in systolic 24-hour ABPM (ABPM SBP) between the cases and controls. Sample size was calculated to detect a mean difference of 5 mm Hg ABPM SBP at 80% power. ETHICS AND DISSEMINATION: The protocol of this study has been approved by the West of Scotland Research Ethics Committee 5 (21/WS/0075), Scotland, UK. Written informed consent will be provided by all study participants. Study findings will be submitted to international peer-reviewed hypertension journals and will be presented at international scientific meetings. TRIAL REGISTRATION NUMBER: NCT05087290.


Subject(s)
COVID-19 , Hypertension , Blood Pressure , Humans , Hypertension/diagnosis , Hypertension/drug therapy , Pilot Projects , SARS-CoV-2
8.
BMJ Open ; 12(5): e055878, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1891826

ABSTRACT

BACKGROUND: There are a paucity of randomised data on the optimal timing of invasive coronary angiography (ICA) in higher-risk patients with non-ST elevation myocardial infarction (N-STEMI). International guideline recommendations for early ICA are primarily based on retrospective subgroup analyses of neutral trials. AIMS: The RAPID N-STEMI trial aims to determine whether very early percutaneous revascularisation improves clinical outcomes as compared with a standard of care strategy in higher-risk N-STEMI patients. METHODS AND ANALYSIS: RAPID N-STEMI is a prospective, multicentre, open-label, randomised-controlled, pragmatic strategy trial. Higher-risk N-STEMI patients, as defined by Global Registry of Acute Coronary Events 2.0 score ≥118, or >90 with at least one additional high-risk feature, were randomised to either: very early ICA±revascularisation or standard of care timing of ICA±revascularisation. The primary outcome is the proportion of participants with at least one of the following events (all-cause mortality, non-fatal myocardial infarction and hospital admission for heart failure) at 12 months. Key secondary outcomes include major bleeding and stroke. A hypothesis generating cardiac magnetic resonance (CMR) substudy will provide mechanistic data on infarct size, myocardial salvage and residual ischaemia post percutaneous coronary intervention. On 7 April 2021, the sponsor discontinued enrolment due to the impact of the COVID-19 pandemic and lower than expected event rates. 425 patients were enrolled, and 61 patients underwent CMR. ETHICS AND DISSEMINATION: The trial has been reviewed and approved by the East of England Cambridge East Research Ethics Committee (18/EE/0222). The study results will be submitted for publication within 6 months of completion. TRIAL REGISTRATION NUMBER: NCT03707314; Pre-results.


Subject(s)
COVID-19 , Non-ST Elevated Myocardial Infarction , ST Elevation Myocardial Infarction , Angiography , Humans , Multicenter Studies as Topic , Pandemics , Prospective Studies , Randomized Controlled Trials as Topic , Retrospective Studies , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/therapy , Standard of Care
9.
Heart ; 108(Suppl 1):A122, 2022.
Article in English | ProQuest Central | ID: covidwho-1891873

ABSTRACT

IntroductionThe pathophysiology and trajectory of multiorgan involvement in post-COVID-19 syndrome is uncertain. We aimed to adjudicate the likelihood of myocarditis in post-COVID-19 patients.MethodsA prospective, longitudinal, cohort study involving post-COVID-19 patients enrolled in-hospital or early post-discharge (visit 1) and re-evaluated 28–60 days post-discharge (visit 2). Serial research blood tests (biomarkers), digital electrocardiography, and patient reported outcome measures were obtained at both visits. Chest computed tomography with pulmonary and coronary angiography, cardiovascular and renal magnetic resonance imaging, were acquired at visit 2.Results159 patients (mean age 55 years, 43% female) and 27 controls with similar age, sex, ethnicity, and vascular risk factors were enrolled from 22 May 2020 to 2 July 2021 and had a primary outcome evaluation. Adjudicated likelihood of myocarditis was not (n=17;11%), unlikely (n=56;35%), probably (n=65;41%) or very likely (n=21;13%). Healthcare worker status (odds ratio, 95% confidence interval: 2.99 (1.01, 8.89);p=0.048), acute kidney injury (3.26 (1.00, 10.64);p=0.050) and HbA1c(0.64 (0.42, 0.99);p=0.044) were multivariable associates of adjudicated myocarditis. During convalescence, COVID-19 was associated with worse health-related quality of life (EQ5D-5L) (p<0.001), illness perception (p<0.001), anxiety and depression (p<0.001), physical activity (p<0.001) and predicted maximal oxygen utilization (ml/kg/min) (p<0.001). These measures were associated with adjudicated myocarditis.ConclusionThe illness trajectory of COVID-19 includes persisting cardio-renal inflammation, lung damage and hemostasis activation. Adjudicated myocarditis occurred in one in eight hospitalized patients and was associated with impairments in health status, physical and psychological wellbeing during community convalescence.Conflict of InterestNil

10.
Nat Med ; 28(6): 1303-1313, 2022 06.
Article in English | MEDLINE | ID: covidwho-1860386

ABSTRACT

The pathophysiology and trajectory of post-Coronavirus Disease 2019 (COVID-19) syndrome is uncertain. To clarify multisystem involvement, we undertook a prospective cohort study including patients who had been hospitalized with COVID-19 (ClinicalTrials.gov ID NCT04403607 ). Serial blood biomarkers, digital electrocardiography and patient-reported outcome measures were obtained in-hospital and at 28-60 days post-discharge when multisystem imaging using chest computed tomography with pulmonary and coronary angiography and cardio-renal magnetic resonance imaging was also obtained. Longer-term clinical outcomes were assessed using electronic health records. Compared to controls (n = 29), at 28-60 days post-discharge, people with COVID-19 (n = 159; mean age, 55 years; 43% female) had persisting evidence of cardio-renal involvement and hemostasis pathway activation. The adjudicated likelihood of myocarditis was 'very likely' in 21 (13%) patients, 'probable' in 65 (41%) patients, 'unlikely' in 56 (35%) patients and 'not present' in 17 (11%) patients. At 28-60 days post-discharge, COVID-19 was associated with worse health-related quality of life (EQ-5D-5L score 0.77 (0.23) versus 0.87 (0.20)), anxiety and depression (PHQ-4 total score 3.59 (3.71) versus 1.28 (2.67)) and aerobic exercise capacity reflected by predicted maximal oxygen utilization (20.0 (7.6) versus 29.5 (8.0) ml/kg/min) (all P < 0.01). During follow-up (mean, 450 days), 24 (15%) patients and two (7%) controls died or were rehospitalized, and 108 (68%) patients and seven (26%) controls received outpatient secondary care (P = 0.017). The illness trajectory of patients after hospitalization with COVID-19 includes persisting multisystem abnormalities and health impairments that could lead to substantial demand on healthcare services in the future.


Subject(s)
COVID-19 , Aftercare , COVID-19/complications , Female , Humans , Male , Middle Aged , Patient Discharge , Prospective Studies , Quality of Life , SARS-CoV-2
11.
Thorax ; 77(7): 717-720, 2022 07.
Article in English | MEDLINE | ID: covidwho-1769953

ABSTRACT

Given the large numbers of people infected and high rates of ongoing morbidity, research is clearly required to address the needs of adult survivors of COVID-19 living with ongoing symptoms (long COVID). To help direct resource and research efforts, we completed a research prioritisation process incorporating views from adults with ongoing symptoms of COVID-19, carers, clinicians and clinical researchers. The final top 10 research questions were agreed at an independently mediated workshop and included: identifying underlying mechanisms of long COVID, establishing diagnostic tools, understanding trajectory of recovery and evaluating the role of interventions both during the acute and persistent phases of the illness.


Subject(s)
COVID-19 , Adult , COVID-19/complications , Caregivers , Disease Progression , Health Priorities , Humans , Research Personnel , Post-Acute COVID-19 Syndrome
12.
Eur Heart J ; 43(11): 1138-1140, 2022 03 14.
Article in English | MEDLINE | ID: covidwho-1684597

Subject(s)
COVID-19 , Humans , SARS-CoV-2
13.
Mayo Clin Proc ; 96(10): 2587-2597, 2021 10.
Article in English | MEDLINE | ID: covidwho-1450188

ABSTRACT

OBJECTIVE: To assess the associations between coronavirus disease 2019 (COVID-19) infection and thromboembolism including myocardial infarction (MI), ischemic stroke, deep vein thrombosis (DVT), and pulmonary embolism (PE). PATIENTS AND METHODS: A self-controlled case-series study was conducted covering the whole of Scotland's general population. The study population comprised individuals with confirmed (positive test) COVID-19 and at least one thromboembolic event between March 2018 and October 2020. Their incidence rates during the risk interval (5 days before to 56 days after the positive test) and the control interval (the remaining periods) were compared intrapersonally. RESULTS: Across Scotland, 1449 individuals tested positive for COVID-19 and experienced a thromboembolic event. The risk of thromboembolism was significantly elevated over the whole risk period but highest in the 7 days following the positive test (incidence rate ratio, 12.01; 95% CI, 9.91 to 14.56) in all included individuals. The association was also present in individuals not originally hospitalized for COVID-19 (incidence rate ratio, 4.07; 95% CI, 2.83 to 5.85). Risk of MI, stroke, PE, and DVT were all significantly higher in the week following a positive test. The risk of PE and DVT was particularly high and remained significantly elevated even 56 days following the test. CONCLUSION: Confirmed COVID-19 infection was associated with early elevations in risk with MI, ischemic stroke, and substantially stronger and prolonged elevations with DVT and PE both in hospital and community settings. Clinicians should consider thromboembolism, especially PE, among people with COVID-19 in the community.


Subject(s)
COVID-19/complications , Pulmonary Embolism/etiology , Thromboembolism/etiology , Aged , COVID-19/diagnosis , Case-Control Studies , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Pulmonary Embolism/diagnosis , Risk Factors , Scotland , Thromboembolism/diagnosis
14.
Lancet Reg Health Eur ; 8: 100186, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1397545

ABSTRACT

BACKGROUND: This study sought to establish the long-term effects of Covid-19 following hospitalisation. METHODS: 327 hospitalised participants, with SARS-CoV-2 infection were recruited into a prospective multicentre cohort study at least 3 months post-discharge. The primary outcome was self-reported recovery at least ninety days after initial Covid-19 symptom onset. Secondary outcomes included new symptoms, disability (Washington group short scale), breathlessness (MRC Dyspnoea scale) and quality of life (EQ5D-5L). FINDINGS: 55% of participants reported not feeling fully recovered. 93% reported persistent symptoms, with fatigue the most common (83%), followed by breathlessness (54%). 47% reported an increase in MRC dyspnoea scale of at least one grade. New or worse disability was reported by 24% of participants. The EQ5D-5L summary index was significantly worse following acute illness (median difference 0.1 points on a scale of 0 to 1, IQR: -0.2 to 0.0). Females under the age of 50 years were five times less likely to report feeling recovered (adjusted OR 5.09, 95% CI 1.64 to 15.74), were more likely to have greater disability (adjusted OR 4.22, 95% CI 1.12 to 15.94), twice as likely to report worse fatigue (adjusted OR 2.06, 95% CI 0.81 to 3.31) and seven times more likely to become more breathless (adjusted OR 7.15, 95% CI 2.24 to 22.83) than men of the same age. INTERPRETATION: Survivors of Covid-19 experienced long-term symptoms, new disability, increased breathlessness, and reduced quality of life. These findings were present in young, previously healthy working age adults, and were most common in younger females. FUNDING: National Institute for Health Research, UK Medical Research Council, Wellcome Trust, Department for International Development and the Bill and Melinda Gates Foundation.

15.
J Thromb Haemost ; 19(10): 2533-2538, 2021 10.
Article in English | MEDLINE | ID: covidwho-1304122

ABSTRACT

BACKGROUND: Venous thromboembolism (VTE) is a common, life-threatening complication of COVID-19 infection. COVID-19 risk-prediction models include a history of VTE. However, it is unclear whether remote history (>9 years previously) of VTE also confers increased risk of COVID-19. OBJECTIVES: To investigate possible association between VTE and COVID-19 severity, independent of other risk factors. METHODS: Cohort study of UK Biobank participants recruited between 2006 and 2010. Baseline data, including history of VTE, were linked to COVID-19 test results, COVID-19-related hospital admissions, and COVID-19 deaths. The risk of COVID-19 hospitalization or death was compared for participants with a remote history VTE versus without. Poisson regression models were run univariately then adjusted stepwise for sociodemographic, lifestyle, and comorbid covariates. RESULTS: After adjustment for sociodemographic and lifestyle confounders and comorbid conditions, remote history of VTE was associated with nonfatal community (RR 1.61, 95% CI 1.02-2.54, p = .039), nonfatal hospitalized (RR 1.52, 95% CI 1.06-2.17, p = .024) and severe (hospitalized or fatal) (RR 1.40, 95% CI 1.04-1.89, p = .025) COVID-19. Associations with remote history of VTE were stronger among men (severe COVID-19: RR 1.68, 95% CI 1.14-2.42, p = .009) than for women (severe COVID-19: RR 1.07, 95% CI 0.66-1.74, p = .786). CONCLUSION: Our findings support inclusion of remote history of VTE in COVID-19 risk-prediction scores, and consideration of sex-specific risk scores.


Subject(s)
COVID-19 , Venous Thromboembolism , Venous Thrombosis , Aged , Biological Specimen Banks , Cohort Studies , Female , Humans , Male , Risk Factors , SARS-CoV-2 , United Kingdom/epidemiology , Venous Thromboembolism/diagnosis , Venous Thromboembolism/epidemiology
16.
CJC Open ; 3(10): 1257-1272, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1272339

ABSTRACT

The current COVID-19 pandemic, caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus, represents the largest medical challenge in decades. It has exposed unexpected cardiovascular vulnerabilities at all stages of the disease (pre-infection, acute phase, and subsequent chronic phase). The major cardiometabolic drivers identified as having epidemiologic and mechanistic associations with COVID-19 are abnormal adiposity, dysglycemia, dyslipidemia, and hypertension. Hypertension is of particular interest, because components of the renin-angiotensin system (RAS), which are critically involved in the pathophysiology of hypertension, are also implicated in COVID-19. Specifically, angiotensin-converting enzyme-2 (ACE2), a multifunctional protein of the RAS, which is part of the protective axis of the RAS, is also the receptor through which SARS-CoV-2 enters host cells, causing viral infection. Cardiovascular and cardiometabolic comorbidities not only predispose people to COVID-19, but also are complications of SARS-CoV-2 infection. In addition, increasing evidence indicates that acute kidney injury is common in COVID-19, occurs early and in temporal association with respiratory failure, and is associated with poor prognosis, especially in the presence of cardiovascular risk factors. Here, we discuss cardiovascular and kidney disease in the context of COVID-19 and provide recent advances on putative pathophysiological mechanisms linking cardiovascular disease and COVID-19, focusing on the RAS and ACE2, as well as the immune system and inflammation. We provide up-to-date information on the relationships among hypertension, diabetes, and COVID-19 and emphasize the major cardiovascular diseases associated with COVID-19. We also briefly discuss emerging cardiovascular complications associated with long COVID-19, notably postural tachycardia syndrome (POTS).


La pandémie actuelle de COVID-19 causée par le coronavirus du syndrome respiratoire aigu sévère 2 (SRAS-CoV-2) est le plus grand enjeu médical des dernières décennies. Elle a mis en évidence des vulnérabilités cardiovasculaires imprévues à tous les stades de la COVID-19 (avant l'infection, pendant la phase aiguë et pendant la phase chronique subséquente). Les principaux facteurs cardiométaboliques dont les associations épidémiologiques et mécanistiques avec la COVID-19 ont été avérées comprennent l'adiposité anormale, la dysglycémie, la dyslipidémie et l'hypertension. L'hypertension suscite un intérêt particulier, car certaines composantes du système rénine-angiotensine (SRA), dont le rôle est crucial dans la physiopathologie de l'hypertension, sont également en cause dans la COVID-19. Plus précisément, l'enzyme de conversion de l'angiotensine 2 (ECA2), une protéine multifonctionnelle du SRA faisant partie de l'axe protecteur du SRA, est également le récepteur permettant au virus SRAS-CoV-2 d'entrer dans les cellules hôtes et de provoquer une infection virale. Les affections cardiovasculaires et cardiométaboliques concomitantes ne font pas que prédisposer les personnes qui en sont atteintes à la COVID-19, elles constituent également des complications de l'infection à SRAS-CoV-2. En outre, de plus en plus de données probantes indiquent que l'atteinte rénale aiguë est fréquente en cas de COVID-19, qu'elle survient tôt et fait l'objet d'une association temporelle avec l'insuffisance respiratoire, et qu'elle est associée à un pronostic sombre, notamment en présence de facteurs de risque cardiovasculaires. Nous discutons ici des maladies cardiovasculaires et rénales dans le contexte de la COVID-19, et présentons les progrès récents sur les mécanismes physiopathologiques en cause dans le lien entre les maladies cardiovasculaires et la COVID-19 en nous attardant sur le SRA et l'ECA2, ainsi que sur le système immunitaire et l'inflammation. Nous présentons de l'information à jour sur les liens entre l'hypertension, le diabète et la COVID-19, et soulignons les principales maladies cardiovasculaires associées à la COVID-19. Nous analysons également brièvement les complications cardiovasculaires émergentes associées à la COVID-19 de longue durée, notamment le syndrome de tachycardie orthostatique posturale (STOP).

18.
J Cardiovasc Magn Reson ; 23(1): 77, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1266491

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) is primarily a respiratory illness, myocardial injury is increasingly reported and associated with adverse outcomes. However, the pathophysiology, extent of myocardial injury and clinical significance remains unclear. METHODS: COVID-HEART is a UK, multicentre, prospective, observational, longitudinal cohort study of patients with confirmed COVID-19 and elevated troponin (sex-specific > 99th centile). Baseline assessment will be whilst recovering in-hospital or recently discharged, and include cardiovascular magnetic resonance (CMR) imaging, quality of life (QoL) assessments, electrocardiogram (ECG), serum biomarkers and genetics. Assessment at 6-months includes repeat CMR, QoL assessments and 6-min walk test (6MWT). The CMR protocol includes cine imaging, T1/T2 mapping, aortic distensibility, late gadolinium enhancement (LGE), and adenosine stress myocardial perfusion imaging in selected patients. The main objectives of the study are to: (1) characterise the extent and nature of myocardial involvement in COVID-19 patients with an elevated troponin, (2) assess how cardiac involvement and clinical outcome associate with recognised risk factors for mortality (age, sex, ethnicity and comorbidities) and genetic factors, (3) evaluate if differences in myocardial recovery at 6 months are dependent on demographics, genetics and comorbidities, (4) understand the impact of recovery status at 6 months on patient-reported QoL and functional capacity. DISCUSSION: COVID-HEART will provide detailed characterisation of cardiac involvement, and its repair and recovery in relation to comorbidity, genetics, patient-reported QoL measures and functional capacity. CLINICAL TRIAL REGISTRATION: ISRCTN 58667920. Registered 04 August 2020.


Subject(s)
COVID-19/complications , Heart Diseases/virology , Research Design , Biomarkers/blood , Comorbidity , Contrast Media , Electrocardiography , Female , Heart Diseases/physiopathology , Humans , Longitudinal Studies , Magnetic Resonance Imaging, Cine , Male , Multicenter Studies as Topic , Myocardial Perfusion Imaging , Observation , Pneumonia, Viral/virology , Prospective Studies , Quality of Life , Risk Factors , SARS-CoV-2 , Troponin/blood , United Kingdom , Walk Test
19.
Open Heart ; 8(1)2021 06.
Article in English | MEDLINE | ID: covidwho-1255621

ABSTRACT

BACKGROUND: Patients with type 2 myocardial infarction (T2MI) and other mechanisms of nonthrombotic myocardial injury have an unmet therapeutic need. Eligibility for novel medical therapy is generally uncertain. METHODS: We predefined colchicine, eplerenone and ticagrelor as candidates for repurposing towards novel therapy for T2MI or myocardial injury. Considering eligibility for randomisation in a clinical trial, each drug was classified according to indications and contraindications for therapy and survival for at least 24 hours following admission. Eligibility criteria for prescription were evaluated against the Summary of Medical Product Characteristics. Consecutive hospital admissions were screened to identify patients with ≥1 high-sensitivity troponin-I value >99th percentile. Endotypes of myocardial injury were adjudicated according to the Fourth Universal Definition of MI. Patients' characteristics and medication were prospectively evaluated. RESULTS: During 1 March to 15 April 2020, 390 patients had a troponin I>URL. Reasons for exclusion: type 1 MI n=115, indeterminate diagnosis n=42, lack of capacity n=14, death <24 hours n=7, duplicates n=2. Therefore, 210 patients with T2MI/myocardial injury and 174 (82.8%) who survived to discharge were adjudicated for treatment eligibility. Patients who fulfilled eligibility criteria initially on admission and then at discharge were colchicine 25/210 (11.9%) and 23/174 (13.2%); eplerenone 57/210 (27.1%) and 45/174 (25.9%); ticagrelor 122/210 (58.1%) and 98/174 (56.3%). Forty-six (21.9%) and 38 (21.8%) patients were potentially eligible for all three drugs on admission and discharge, respectively. CONCLUSION: A reasonably high proportion of patients may be considered eligible for repurposing novel medical therapy in secondary prevention trials of type 2 MI/myocardial injury.


Subject(s)
Anterior Wall Myocardial Infarction/drug therapy , Colchicine/therapeutic use , Eplerenone/therapeutic use , Myocardium/metabolism , Patient Selection , Ticagrelor/therapeutic use , Troponin I/blood , Anterior Wall Myocardial Infarction/blood , Anterior Wall Myocardial Infarction/diagnosis , Anterior Wall Myocardial Infarction/therapy , Biomarkers/blood , Female , Follow-Up Studies , Humans , Male , Mineralocorticoid Receptor Antagonists/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Retrospective Studies , Tubulin Modulators/therapeutic use
20.
The FASEB Journal ; 35(S1), 2021.
Article in English | Wiley | ID: covidwho-1233989

ABSTRACT

Introduction COVID-19 is primarily a respiratory disease associated with cardiovascular risk. SARS-CoV-2, the virus causing COVID-19, uses ACE2, an important enzyme in the cardiovascular system that regulates the conversion of Ang II (deleterious/pro-hypertensive) to Ang 1-7 (protective/anti-hypertensive), as a receptor for host cell entry and infection. Considering the relationship between the viral S1-protein and the host's ACE2, it is unclear whether this interaction is merely a mechanism of infection or whether it also contributes to cardiovascular damage associated with COVID-19. We hypothesisedthat SARS-Cov-2-ACE2 interaction induces activation of vascular cell inflammatory responses that are influenced by ACE2 dependent and/or independent enzymatic Ang-(1-7) production. Methods Human microvascular endothelial cells (MEC) were used and stimulated with SARS-CoV-2 recombinant S1 protein (rS1p) (0.66 ?g/mL) at 10/30 min (acute) and 5/24h (chronic). Activation of pro-inflammatory signaling pathways (immunoblotting, real-time PCR), microparticle (MP) generation (NanoSight), and cytokine production (ELISA) were assessed. In some experiments, cells were pre-incubated with an ACE2 activator (DIZE ? 190 nM) and inhibitor (MLN-4760 ? 440 pM). Results rS1P increased NF?B activation (Control ?=0.99±0.06 vs. 1.38±0.19 AU;p<0.05) and MP formation (C=1.01±0.17 vs. 2.06±0.21, x109/mL;p<0.05), a marker of endothelial cell damage. mRA expression of IL-1? (C=1.07±0.13 vs. 50.04±4.63 2

SELECTION OF CITATIONS
SEARCH DETAIL