Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311766

ABSTRACT

The emergence of SARS/MERS drug-resistant SARS-CoV2 comes with higher rates of transmission and mortality. Like all coronaviruses, SARS-CoV-2 is a relatively large virus consisting of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs by identifying potential drugs that are predicted to effectively inhibit critical enzymes. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral multiplication cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2’-O-MT. For virtual screening, the energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard(Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs (n=5903) that are approved by worldwide regulatory bodies. The screening was performed against viral targets using three sequential docking modes (i.e. HTVS, SP, and XP). Our in-silico virtual screening identified ~290 potential drugs based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. Herein we report the evaluation of in-vitro efficacy of selected hit drug molecules on SARS-CoV-2 inhibition. Among eight molecules included in our evaluation, we found inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), as the potent inhibitor of SARS-CoV-2 in-vitro . Further, in-silico predicted target validation through enzymatic assays confirmed 3CLpro to be the target. Therefore, our data support advancing BIM IX for clinical evaluation as a potential treatment for COVID-19. This is the first study that has showcased the possibility of using bisindolylmaleimide IX to treat COVID-19 through this pipeline.

3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311765

ABSTRACT

The emergence of SARS/MERS drug resistant COVID-19 with high transmission and mortality has recently been declared a deadly pandemic causing economic chaos and significant health problems. Like all coronaviruses, SARS-CoV-2 is a large virus that has many druggable components within its proteome. In this study, we focused on repurposing approved and investigational drugs by identifying potential drugs that are predicted to effectively inhibit critical enzymes within SARS-CoV-2. We shortlisted seven target proteins with enzymatic activities known to be essential at different stages of the virus life cycle. For virtual screening, the energy minimization of a crystal structure or modeled protein was carried out using Protein Preparation Wizard (Schrödinger LLC, 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs (n=5903) that are already approved by worldwide regulatory bodies including the FDA, using the ZINC database. Screening was performed against viral targets using three sequential docking modes (i.e. HTVS, SP and XP). Our in-silico virtual screening identified ~290 potential drugs based on the criteria of energy, docking parameters, ligand and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. A top lead from each target group was further subjected to molecular dynamics simulation (MDS) using the Desmond module to validate the efficacy of the screening pipeline. All of the simulated hit-target complexes were predicted to strongly interact and with highly stable binding. Thus, we have identified a number of approved and investigational drugs with high likelihood of inhibiting a variety of key SARS-CoV-2 proteins. Follow-up studies will continue to identify inhibitors suitable for combination therapy based on drug-drug synergy to thwart resistance. In addition, the screening hits that we have identified provide excellent probes for understanding the binding properties of the active sites of all seven targets, further enabling us to derive consensus molecules through computer-aided drug design (CADD). While infections are expanding at a rampant pace, it must be recognized that resistance will grow commensurately through either genetic shift and/or genetic drift to all small molecule drugs identified. Vaccines should provide a more permanent solution through prevention, but resistivity is still a possible scenario. Nevertheless, a persistent multi-target drug development program is essential to curb this ongoing pandemic and to keep reemergence in check.

5.
Methods ; 195: 57-71, 2021 11.
Article in English | MEDLINE | ID: covidwho-1030927

ABSTRACT

SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2'-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = 5903). The screening was performed against viral targets using three sequential docking modes (i.e., HTVS, SP, and XP). Virtual screening identified ∼290 potential inhibitors based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. The resulting top eight hits were tested for their SARS-CoV-2 anti-viral activity in-vitro. Among these, a known inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), was found to be a potent inhibitor of SARS-CoV-2. Further, target validation through enzymatic assays confirmed 3CLpro to be the target. This is the first study that has showcased BIM IX as a COVID-19 inhibitor thereby validating our pipeline.


Subject(s)
Antiviral Agents/administration & dosage , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Delivery Systems/standards , Indoles/administration & dosage , Maleimides/administration & dosage , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Antiviral Agents/metabolism , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Dose-Response Relationship, Drug , Drug Delivery Systems/methods , Drug Evaluation, Preclinical/methods , Drug Repositioning/methods , Drug Repositioning/standards , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/standards , Humans , Indoles/chemistry , Indoles/metabolism , Maleimides/chemistry , Maleimides/metabolism , Molecular Docking Simulation/methods , Molecular Docking Simulation/standards , Protein Structure, Secondary , Reproducibility of Results , SARS-CoV-2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL